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Abstract—Road safety has become increasingly efficient by
incorporating technologies such as Vehicle-to-Everything (V2X)
communication and Machine Learning (ML) algorithms. These
solutions enable real-time data exchange between vehicles and
infrastructure, helping predict and prevent accidents. The latency
in transmitting this information is a critical factor that impacts the
system’s effectiveness. In this context, this work investigates vehicle
collision prevention and uses simulations with different collision
scenarios to train predictive ML models. As a result, trained
models were capable of predicting collisions up to five seconds in
advance and accurately classifying different risk scenarios. This
demonstrates the potential of these technologies to enhance safety
and efficiency in traffic.

Index Terms—VANETs, Collision prevention, Machine learning

I. INTRODUCTION

Despite significant advances in the application of Artificial
Intelligence (AI) and Vehicle-to-Everything (V2X) communica-
tion for collision detection and prevention, current models still
face notable challenges [1]. Numerous approaches demonstrate
limited adaptability to highly dynamic and nonlinear scenarios
and frequently depend on large volumes of centralized data,
thereby compromising scalability and applicability in real-world
traffic environments [2]. These restrictions directly affect the
effectiveness of collision prevention applications and hinder
vehicles’ ability to make timely decisions.

Moreover, in Vehicular Networks (VANETs), node mobility
imposes significant challenges to message transmission and
reception. VANET operates in highly dynamic environments,
where network topology constantly changes due to the high-
speed and multidirectional movement of vehicles [3], [4]. High
mobility directly affects the stability of communication links.
Mobility also introduces issues related to time synchronization
and spatial alignment, which are critical for safety applications
such as collision warnings and emergency braking. The mobility
of nodes negatively affects the reliability, latency, link stability,
and efficiency of communication protocols. This highlights
the need for robust and adaptive solutions to ensure effective
information dissemination in highly dynamic environments [5].

To address these limitations, several studies aim to apply
Machine Learning (ML) techniques to predict adverse road
conditions and make decisions based on this information [6].
A significant portion of existing research relies on limited or
unrealistic datasets, which hinders the generalization of models

to diverse traffic patterns, weather conditions, and infrastructure
scenarios. Even in simulated environments, experiments often
fail to replicate complex situations involving multiple vehicle
interactions accurately. This highlights the need for more
robust and adaptable solutions validated in contexts that closely
resemble real-world traffic conditions.

In this context, this work presents an approach based on
ML algorithms and V2X communication to predict vehicle
collisions. The proposed method addresses the limitations of
previous models by analyzing interactions between vehicles
in realistic urban scenarios, allowing rapid responses and
reducing risks to road safety. The main innovation lies in
integrating predictive modeling, traffic simulations incorporat-
ing multiple dynamic variables, and systematic validation of
the results. Based on a realistic mobility trace, the simulation
results highlight the benefits of the proposed approach and
demonstrate its effectiveness in predicting future behavior and
identifying risk situations. The model achieved a coefficient of
determination (R2) of 93.96% for predicting vehicle behavior
5 seconds in advance, indicating high accuracy in trajectory
estimation. Furthermore, the accuracy in classifying situations
as risky or not reached 97.31%, reinforcing the system’s ability
to anticipate critical events reliably. The average processing
time per prediction was only 1.09 seconds, underscoring the
solution’s potential for near real-time applications in dynamic
urban scenarios.

In summary, the contributions of this work are:

• an approach that integrates ML algorithms and V2X
communication to predict vehicle collisions in highly
dynamic and nonlinear traffic scenarios;

• validation in realistic urban environments with mobility
traces and dynamic simulations; and

• the achievement of high accuracy in trajectory prediction
and risk classification, with low processing time, enabling
near real-time application in vehicular networks.

The remainder of this paper is organized as follows. Sec-
tion II presents the main studies related to the use of ML
and V2X communication in collision prevention. Section III
describes the methodology for modeling and simulating the
scenarios. Section IV discusses the results obtained with the
proposed models. Finally, Section V concludes the paper with
the findings, study limitations, and future research directions.
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II. RELATED WORK

This section reviews recent research on vehicle collision pre-
vention, highlighting the use of ML and V2X communication.
Several studies explore predictive models to enhance traffic
safety by analyzing sensor data and smart infrastructure using
ML to anticipate risks in VANETs. For example, Parada et al.
[7] proposed a collision prevention system between vehicles and
vulnerable road users using 5G networks, Deep Learning (DL),
and a Monte Carlo-based probability estimation algorithm. The
method predicts vehicle trajectories using neural networks and
calculates the probability of collision based on random samples
of these trajectories.

Alagarsamy et al. [8] presented a study in which they analyze
the main causes of accidents on urban highways through the use
of ML algorithms, specifically Reinforcement Learning (RL)
and Random Forest (RF), to identify factors associated with
collisions. This approach aims to understand accident patterns
better and classify them more precisely. However, the authors
do not consider dynamic and nonlinear scenarios, which limits
the applicability of their study.

In the same direction, Veluchamy et al. [9] presented a
braking decision-making system in Advanced Driver Assistance
Systems (ADAS). The study combines Generative Adversarial
Networks (GANs) and Deep Convolutional Neural Networks
(DeepCNNs) to process video captured by cameras, extracting
relevant information for automated decision-making. However,
the training of the models occurs using images that are
compromised by different weather conditions on highways.

In Ribeiro et al. [10], a model based on V2X communication
and Recurrent Neural Networks (RNNs), specifically Long
Short-Term Memory (LSTM) networks, was developed to pre-
dict collisions involving vulnerable road users, such as motor-
cyclists. The study demonstrated that V2X communication can
enhance collision detection, enabling more accurate predictions
in situations where conventional sensors face limitations, such
as line-of-sight obstructions. However, the applicability of the
model is limited in certain contexts due to unmodeled factors
such as complex urban traffic, diverse vehicle interactions,
dynamic mobility, and city-specific conditions.

Farhat et al. [11] propose a collaborative collision avoidance
system which integrates Mobile Edge Computing (MEC), V2X
communication, and a DL model (YOLOv5) for visual vehicle
detection and risk assessment. The system leverages onboard
cameras and MEC servers deployed in Road Side Units (RSUs)
to continuously monitor traffic, predict potential collisions, and
issue alerts or trigger emergency braking.

In contrast to previous studies, this work offers a more
robust, adaptive, and context-aware approach to collision risk
classification. Although many existing models depend heavily
on infrastructure (e.g., MEC servers) and visual sensors (e.g.,
LIDAR and cameras), which are costly to deploy, susceptible
to environmental conditions or constrained by infrastructure
availability, our approach relies solely on data generated
internally by the vehicle, such as speed, direction, and position,
in addition to its V2X communication capability.

III. SYSTEM OVERVIEW

This section describes the methodology used to evaluate the
ML techniques for vehicle collision prevention.

A. System model

The system model employed in this work is composed of
vehicles, communication infrastructures (e.g., RSUs), and a
remote server in the Internet cloud. In this scenario, vehicles
move around the city and can communicate with the RSUs.
Each RSU ri, denoted as ri ∈ R = {r1, r2, . . . , rm}, has its
coverage area in meters, can collect data from all vehicles
within its coverage, and has wired communication with the
remote server. Vehicles periodically send information to the
RSU, including: position (x, y, z), speed, acceleration, direction,
distance (distance to all surrounding vehicles, calculated
based on the beacons received from those vehicles via V2V
communication), and TTC (time to collision, computed using
the collision documentation provided by SUMO simulator1).
The city is divided into |R| regions, where |R| = m and
represents the number of RSUs present in the scenario. In
this case, we consider m = 9 and the placement of the RSUs
ensures full coverage of the scenario.

B. Communication model

The proposed vehicular communication model, or message
exchange model, is presented in Figure 1. Each vehicle vi ∈
V maintains and reads its own set of historical data locally.
Using this information, each vehicle estimates its future state
over a horizon of five time steps t + 5, predicting variables
such as position, speed, and acceleration. This process allows
anticipating risky situations and generating messages containing
its predicted state Si(t+5), which are immediately transmitted
to the RSU via Vehicle-to-Infrastructure (V2I) communication.

RSU's coverage

RSUV2I

V2V

Fig. 1. Message exchange model considered in the study.

Upon receiving a set of messages {S1, S2, . . . , Sn} from the
vehicles vi ∈ V , the RSU individually analyzes each situation.
If the received message indicates that the future state of the
vehicle is classified as situation(vi) = SAFE, the RSU only
records the information in its local data repository. On the other
hand, if the message indicates a situation(vi) = RISK, the
RSU generates an alert message and sends it to all vehicles
within its coverage area. This decision ensures that nearby
vehicles are informed and can react preventively.

In more critical scenarios, when the RSU identifies a
predicted situation(vi) = COLLISION , an emergency

1http://sumo.dlr.de/docs/Simulation/Output/Collisions.html



protocol is triggered. The RSU generates and transmits a high-
priority message using dedicated high-priority communication
channels, thus ensuring rapid dissemination of the information
to surrounding vehicles. This hierarchical response process,
based on the classification of the vehicles’ future states, enables
efficient action by the intelligent road infrastructure, increasing
safety and reducing drivers’ reaction time.

C. Prediction Time Window study

Given that the average speeds of the vehicles were recorded
during the simulation, a quantitative analysis was conducted to
determine the minimum stopping time required in hazardous
situations based on each vehicle’s respective speed. Table I
presents the values observed in each RSU.

TABLE I
AVERAGE VEHICLE SPEED NEAR THE RSU, WHERE THE FIRST LINE

INDICATES THE RSU IDENTIFIER, AND THE SECOND LINE SHOWS THE
CORRESPONDING AVERAGE SPEED RECORDED.

#1 #2 #3 #4 #5 #6 #7 #8 #9

9,17 6,50 9,83 9,22 11,33 12,11 10,06 15,33 16.94

Based on the maximum speeds observed during the simula-
tions, it is possible to estimate the time required for a vehicle
to come to a complete stop, assuming constant deceleration
[12]. To estimate the braking time, the following kinematic
equation was considered:

t =
v

a
(1)

where t represents the time required for the vehicle to come to
a complete stop, v is the initial speed (in meters/second), and
a corresponds to the average deceleration (in meters/second
squared). Considering a deceleration of 6m/s2 [13], we have:

t =
16,94

6
≈ 2,82 seconds (2)

Thus, it is estimated that a vehicle traveling at the maximum
speed observed in the simulations would require approximately
2,82 seconds to come to a complete stop. For the system to
effectively prevent collisions in connected vehicular environ-
ments, it is crucial that vehicle behavior predictions are made
with adequate anticipation. This anticipation must consider
not only the stopping time of the vehicle but also any delays
introduced by communication between network nodes.

In this context, Equation (3) is designed to compute the total
time required to perform predictions in cooperative vehicular
systems, considering the main factors that influence the overall
latency of the process.

f(x) = tv→RSU + tRSU→v +
(v
a

)
+ (jv→RSU + jRSU→v) + tp

(3)
The function f(x) represents the total system response time

based on the input variable x. The terms tv→RSU and tRSU→v

denote the communication times between the vehicle and the
RSU in both directions, including transmission, propagation,
and queuing delays. The expression

(
v
a

)
corresponds to the

Algorithm 1: Vehicle Risk Prediction
Input: Pre-trained input data
Output: Vehicle situation situation for i ∈ V

/* Prediction windows */
1 w ← [1, 2, 3, 4, 5]

2 foreach vehicle i ∈ V do
3 Prediction()
4 Communication()

5 Function Prediction():
/* Regression Models */

6 foreach model r ∈ R that predicts vehicle behavior do
7 Run the models with input data for each w
8 Calculate performance metrics

9 Select r ∈ R with the best metrics
/* Classification Models */

10 foreach model c ∈ C that classifies vehicle situation do
11 Run the models with input data for each w
12 Calculate performance metrics

13 Select c ∈ C with the best metrics
14 situation← Combine results from R and C for each w
15 return situation for each w

16 Function Communication():
17 if situation != SAFE then
18 Send alert message to RSU

19 else
20 Send update message to RSU

total braking time, calculated as the ratio of the vehicle’s
speed v to its deceleration a; for simulation purposes, an
average of 6 seconds per meter is assumed in controlled
environments. The term jv→RSU+jRSU→v captures the average
communication jitter, referring to the statistical variation in
packet transmission delays, which can impact stability in
dynamic vehicular networks. Finally, tp denotes the model’s
prediction processing time, i.e., the duration required for a
machine learning model or inference system to generate a
response based on the input variable x.

D. Applying Machine Learning algorithms

After data collection, performed through real-time communi-
cation between vehicles and RSU, well-known ML algorithms
for regression and classification were used to predict and
calculate collision situations between vehicles that share their
mobility information. Thus, the regression and classification ver-
sions of the following algorithms were considered: K-Nearest
Neighbors (KNN), Random Forest (RF), and Decision Tree
(DT). In this study, the regression versions of the algorithms
are referred to as KNN-r, RF-r, and DT-r. Additionally, the
classification versions of these algorithms are referred to as
KNN-c, RF-c, and DT-c.

Algorithm 1 describes the risk prediction and communication
system that is executed on each vehicle in the scenario. Initially,
it receives mobility data from the vehicles. With this data, the
system trains models to predict collision risks. It operates in
two main stages: the first for prediction and the second for
communication, called Prediction and Communication,
respectively. First, vehicles continuously perform the prediction
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Fig. 2. Simulation results considering different Machine Learning (ML) models and prediction time window.

process locally (Line 3). In the prediction stage, regression
models are used to predict the vehicle’s behavior in different
observation windows (w) (Lines 6 and 8). After this prediction,
classification models are applied to identify the situations the
vehicle will encounter in each future w (Lines 10 and 12). The
vehicle’s situation is determined by combining these results,
which can be SAFE, RISK, or COLLISION (Line 14). Finally,
the vehicle sends a data message to the nearest RSU (Line 4),
which can either be an alert message in the case of a RISK or
COLLISION situation, or an update message if its situation is
SAFE (Lines 17 and 20).

IV. PERFORMANCE EVALUATION

This section presents details of the performance evaluation
carried out with the ML models in the context of vehicle
accident detection and prevention.

A. Scenario description and Methodology

The simulation platform to evaluate the performance of the
designed mechanism is composed of the Simulation of Urban
Mobility (SUMO) 1.18.0, the network simulator OMNeT++
6.0.0, and the vehicular networking framework Veins 5.2 [14],
which implements the IEEE 802.11p protocol stack for V2X
communication and signal attenuation. The ML algorithms
were implemented in Python 3.13.4. We used a central sub-
map of 114 km2 from TAPASCologne trace2, which reproduces
vehicle traffic in the city of Cologne, Germany. We consider
2 hours of vehicular mobility and up to 700 vehicles. The
simulation time was 800 seconds, with 100 initial seconds of
warm-up. We ran the simulations 33 times to obtain a 95%
confidence interval.

The metrics used for the evaluation were: (1) R² (Coefficient
of Determination, for measuring the proportion of variance
explained by the regression models; (2) AUC (Area Under
the ROC Curve), for assessing the discriminative ability of
classifiers across multiple classes; and (3) Prediction Time, to
measure the computational cost and real-time feasibility.

Figure 3 shows the spatial distribution of RSUs in the
simulation scenario. Each RSU has a communication coverage

2https://sumo.dlr.de/docs/Data/Scenarios.html

area of 2600 meters, allowing it to reach a wide urban zone
and communicate with multiple vehicles simultaneously.

Fig. 3. Cologne sub-map and Road Side Unit (RSU) deployed in the city.

B. Simulation Results

Figure 2(a) presents the results for the coefficient of
determination (R2), expressed as a percentage, obtained by the
regression models KNN-r, DT-r, and RF-r across different
prediction windows (w = {1, 2, 3, 4, 5}). The R2 value
indicates the proportion of variance in the data explained by the
model, with values closer to 100% reflecting higher predictive
accuracy. The results show that for the w = 1 window, all
models achieved excellent performance, with the KNN-r model
reaching the highest R2 value of 97.63%, followed by RF-
r with 97.24%, and DT-r with 96.29%. As the value of w
increases, a decreasing trend in the R2 values is observed
(an expected behavior, as longer-term predictions are generally
more challenging to perform accurately). Despite this reduction,
performance remains high across all windows. The KNN-r
model remains the most effective across all prediction windows,
still achieving an R2 of 93.61% at w = 5. The RF-r model also
shows consistent performance and outperforms the DT-r model,
confirming the benefits of ensemble methods like Random
Forest over individual decision trees. DT-r exhibits the lowest
R2 values across all windows but still maintains results above
91%, which is considered satisfactory. Overall, these results
confirm the models’ ability to accurately predict vehicular
behavior, especially in short-term windows. Even with the
expected performance drop as the prediction horizon increases,



all models maintain R2 values above 90%, highlighting the
robustness of the proposed approaches.

Figures 2(b) to 2(d) present the ROC curves for the classifica-
tion models DT-c, KNN-c, and RF-c, respectively, considering
the prediction window w = 5 (most challenging scenario) and
the three evaluated classes: COLLISION, RISK, and SAFE. The
DT-c model exhibited a noticeable decline in performance,
with AUC values dropping to 80% for the SAFE class and
79% for the COLLISION class, indicating higher sensitivity
to increased prediction horizons and reduced generalization
capability. In contrast, the KNN-c model maintained strong
discriminative performance, with AUC values above 89% for
all classes at w = 5, confirming its robustness even for
longer-term predictions. The RF-c model delivered the best
results overall, with AUC values above 96% across all classes,
demonstrating high accuracy and strong resilience to longer
prediction windows. The RF-c model shows the best predictive
performance, followed by KNN-c, while DT-c performs worst
in longer prediction scenarios.

Fig. 4. Model prediction time results.

Figure 4 shows the prediction time of the models in both
regression and classification scenarios, considering different
values of w = {1, 2, 3, 4, 5}. This analysis enables the evalua-
tion of the computational cost associated with each approach,
highlighting performance differences among the tested models.
The KNN-r and KNN-c models exhibit distinct behaviors.
While the KNN-c model shows a significant increase in
prediction time as w grows (suggesting a higher computational
cost due to nearest neighbor searches in high-dimensional
spaces) the KNN-r model remains more efficient, maintaining
a stable prediction time across all values of w. The DT-r
and DT-c models show smaller variations between regression
and classification. The regression model maintains consistent
performance, and the classification model exhibits only minor
fluctuations, indicating that the hierarchical structure of decision
trees can handle both tasks with minimal impact on inference
time. In the case of RF, the RF-r model starts with a relatively
high prediction time, which stabilizes as w increases. The RF-c
model demonstrates more uniform performance across all w
values, suggesting that the ensemble structure of RF handles
classification efficiently and maintains predictable inference
times. In general, the results indicate that regression models
generally offer faster prediction times, while classification

models tend to incur higher computational costs, particularly
for algorithms like KNN.

V. CONCLUSION

This study demonstrated the effectiveness of Machine Learn-
ing (ML) models in predicting vehicle collisions, highlighting
the potential of these approaches in enhancing road safety.
The Random Forest (RF)-classifier model outperformed in
all time windows analyzed, while the K-Nearest Neighbors
(KNN)-regressor model showed superior results in the first
three prediction steps, later surpassed by the RF-regressor in
the last two. Future work will explore the possibility of in-
vehicle edge training, as well as compare different distribution
strategies using a federated learning model that exchanges
only model weights. Additionally, Vehicle-to-Vehicle (V2V)
communication will be investigated with mechanisms to ensure
both data dissemination and privacy.
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