
Mobility-aware Vehicular Cloud Formation Mechanism for Vehicular Edge Computing
Environments

Joahannes B. D. da Costaa,b,∗, Wellington Lobatoa, Allan M. de Souzaa, Eduardo Cerqueirac, Denis Rosárioc,
Christoph Sommerb, Leandro A. Villasa

aInstitute of Computing, University of Campinas (UNICAMP), Campinas, Brazil
bTU Dresden, Faculty of Computer Science, Dresden, Germany

cFederal University of Pará (UFPA), Belém, Brazil

Abstract

Rapid advancements in vehicular technology and increased vehicle modernization have led to the emergence of intelligent
and interconnected entities. As a result, the Vehicular Edge Computing (VEC) paradigm has gained prominence. This
paradigm enables the provision of cloud computing services close to vehicular users by utilizing the idle computational
resources of vehicles to execute tasks that require computing power beyond what is available locally. Aggregating these
computational resources in the vehicular context is known as Vehicular Cloud (VCloud) formation. However, leveraging
and aggregating these resources poses several challenges due to the dynamic nature of the vehicular environment. One of
the main challenges is the efficient selection of vehicles to assume management roles in the distribution of computational
power within the group, often referred to as leading vehicles. This research presents a mobility-aware mechanism called
PREDATOR to enhance the VCloud formation process. In this mechanism, the Roadside Unit (RSU) provides vehicular
mobility predictions, enabling the selection of the most stable vehicles within the RSU coverage area to assume leadership
roles in the VCloud. In this context, vehicle stability is associated with a vehicle’s time within the RSU coverage area,
known as dwell time. PREDATOR employs a microscopic perspective to select vehicles with the longest dwell time in the
VCloud, allowing for efficient management of computational resource utilization. Simulation results have demonstrated
that PREDATOR not only increases the VCloud lifetime but also minimizes leader changes, reduces network message
exchange, mitigates packet collisions, and facilitates the effective utilization of aggregated vehicular resources compared
to state-of-the-art approaches.

Keywords: Mobility Prediction, Vehicular Edge Computing, Vehicular Cloud formation, Clustering

1. Introduction

In recent years, vehicles have become increasingly more
intelligent and connected [1, 2]. Furthermore, vehicles
can exchange data with other entities through Vehicle-
to-Everything (V2X) communication [3]. However, this
evolution can dramatically increase bandwidth consump-
tion and potentially create network congestion at the net-
work core due to the growing number of connected vehicles
and vehicular applications [4]. In this sense, the Vehicular
Edge Computing (VEC) paradigm emerges to make it pos-
sible to provide cloud services closer to the vehicle users,
which aims to group and use the computational resources
of vehicles as a service to run tasks that require computing

∗Corresponding author
Email addresses: joahannes.costa@ic.unicamp.br (Joahannes

B. D. da Costa), wellington@lrc.ic.unicamp.br (Wellington
Lobato), allanms@lrc.ic.unicamp.br (Allan M. de Souza),
cerqueira@ufpa.br (Eduardo Cerqueira), denis@ufpa.br (Denis
Rosário), leandro@ic.unicamp.br (Leandro A. Villas)

URL: www.ic.unicamp.br/~joahannes.costa (Joahannes B. D.
da Costa), www.cms-labs.org/people/sommer/ (Christoph Sommer)

power above than supported locally [5]. In short, VEC is
the union of Mobile Edge Computing (MEC) and cloud
computing concepts, where vehicles become active in us-
ing and providing computing resources to the Vehicular
Ad-Hoc Network (VANET) [6].

VEC considers a set of Vehicular Clouds (VClouds) to
allow vehicular users to request resources to meet applica-
tion demands [7, 8]. Specifically, VCloud groups up com-
putational resources, such as processing units and storage
capacity, available in a set of vehicles (i.e., either moving
or parked vehicles) and infrastructure (i.e., Roadside Units
(RSUs), 5G Base Stations (BSs), and Remote Servers (RS)
in the Internet cloud) nodes to provide cloud services [9].
In other words, some vehicles increase their computing ca-
pacity by using VEC resources, while others lend their
available resources to VCloud. Hence, VEC avoids the
underutilization of vehicular computing resources by using
idle resources to be managed and utilized by other vehicles.
In this context, there is a need to rely on VCloud forma-
tion mechanisms for grouping these vehicles in VClouds,
where VCloud formation occurs by creating groups with
a set of vehicles in a geographic region sharing the same

Preprint submitted to Ad Hoc Networks August 8, 2023

© 2023 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license (see https://creativecommons.org/licenses/by-nc-nd/4.0/).
This is the author’s version of the work. The definitive version is available in the digital library linked below.

Elsevier Ad Hoc Networks (Volume 151, December 2023) Digital library entry → https://doi.org/10.1016/j.adhoc.2023.103300

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.adhoc.2023.103300

preferences, such as direction, trajectory, path similarity,
etc [10, 4].

The VCloud formation mechanisms rely on the com-
munication infrastructures to assist the VClouds forma-
tion process [11]. In this sense, vehicles under infras-
tructure coverage are considered members of this VCloud.
This is because, in a macroscopic view, these VClouds can
be inter-communicable through infrastructures deployed
in cities, allowing cooperation between them [12]. In this
work, we consider moving vehicles in specific geographic
regions in the city, e.g., intersections, which are covered
by RSUs. Specifically, intersections are an appropriate
location for setting up VClouds as vehicles traveling on
multiple road segments can meet at one place [13]. Un-
like distributed approaches for VCloud formation, we con-
sider that vehicles do not have autonomy in defining the
roles of Vehicular Cloud Head (VCloudHead) or Vehicular
Cloud Member (VCloudMember). In this case, the RSU
performs the required inferences for these definitions and
informs vehicles. This definition is essential to take advan-
tage of the communication infrastructures naturally avail-
able in cities, with the broad expansion of 5G networks
[14], and considerably reduce the number of maintenance
messages that fully-distributed approaches need in their
decision processes.

However, high vehicular mobility is the main challenge
for proposing efficient VCloud formation mechanisms since
vehicle mobility causes several variations in network topol-
ogy and intermittent connections [15]. For example, it may
happen that the connection between the client vehicle and
the vehicles processing in the VCloud does not last until
the scheduled tasks finish their execution, which generates
rescheduling processes and increases the cost of using re-
sources. Hence, vehicular mobility impacts the system ef-
ficiency by fluctuating the number of available resources in
the VCloud, causing the loss of task processing results and
impacting the number of tasks attended/scheduled [16]. In
this context, existing works have considered mobility in-
formation in their decision-making processes to mitigate
the impact of vehicular mobility [17, 18, 19]. Although
mobility is considered in such works, they do not involve
mobility in their optimization problems, and mobility is
like a trigger condition for other processes [20]. Hence,
providing a mobility-aware VCloud formation mechanism
to select the most stable vehicles to lead each VCloud and
make managing more stable and reliable is still an open
issue [21].

In this context, this article describes a mobility-aware
mechanism called PREDATOR that enhances the VCloud
formation process. The mechanism leverages the vehicular
mobility predictions provided by RSUs to select the most
stable vehicles within the RSU coverage area to lead the
VCloud, thereby increasing the VCloud’s lifetime. Vehi-
cle stability is measured by the dwell time, representing
the duration a vehicle spends within the RSU coverage
area [13]. To achieve this, RSUs receive contextual in-
formation from vehicles through the natural beacon ex-

change in VANET. This information is aggregated at the
city intersections at certain intervals, and the RSU ex-
ecutes the VCloud formation process. The number of
VClouds formed is proportional to the number of RSUs
in the scenario. Additionally, a Network Controller at
a higher level in the network can oversee these VClouds
and manage their aggregated resources. Simulation re-
sults demonstrate the superior performance of PREDA-
TOR compared to other VCloud formation mechanisms.
The results highlight the benefits of PREDATOR, includ-
ing a 42.15% longer VCloud lifetime, 45.81% lower num-
ber of VCloud leader changes, 48.51% lower number of
messages exchanged on the network, 43.55% lower num-
ber of packet collisions, and the ability to serve 24.68%
more requests for vehicular computational resources.

This article extends our previous work [22] by intro-
ducing a detailed description of PREDATOR, including all
algorithms, a new function to select stable vehicles, a de-
tailed explanation of the mobility prediction aspects, and
an evaluation of the impact of different mobility traces to
choose more stable nodes in each VCloud. We also intro-
duced a comprehensive assessment in a more challenging
and realistic VANET scenario (i.e., Luxembourg city [23]).
Therefore, the contributions of this work can be summa-
rized as follows:

• We describe an efficient mechanism for the VCloud
formation assisted by communication infrastructures,
which increases the VClouds lifetime and decreases
the number of sent messages on the network.

• We consider vehicular mobility prediction informa-
tion to enhance the decision-making process in vehi-
cle selection to lead each VCloud, making VClouds
more stable and lessening their management burden.

• In a detailed performance evaluation with different
mobility traces (synthetic and realistic), we show the
necessity and outline the benefits of mobility predic-
tion information for the VCloud formation process
compared to other state-of-the-art approaches.

This article is organized as follows. Section 2 presents
and discusses the related works. Section 3 presents the
system model and operation of PREDATOR. Section 4
discusses the performance evaluation and results obtained.
Finally, Section 5 provides final remarks and discusses fu-
ture work.

2. Related Work

This section presents state-of-the-art research on group-
ing network devices to use their computational resources
for different purposes. We have analyzed these studies
focusing on their applicability in VCloud formation sce-
narios, which typically utilize conventional clustering con-
cepts in VANETs [24, 25]. Furthermore, we have catego-
rized the related works into three perspectives based on

2

the level of infrastructure support, the grouping strategy
employed, and the integration of mobility information into
the decision-making process.

For instance, Zhao et al. [26] proposed an algorithm
to form mobile device groups considering social factors,
particularly the degree coefficient, to maximize network
throughput among the grouped devices. The algorithm se-
lects leaders and members for each group based on social
attributes and physical factors such as community, con-
nections, and geographic proximity. While this approach
is generic, it can also be applied in vehicular environments.
Similarly, Kamakshi et al. [27] introduced an algorithm
based on graph modularity gain and the degree of cohesion
between vehicles to form stable vehicle groups. In sum-
mary, the algorithm selects forwarders (i.e., Vehicle-to-
Vehicle (V2V) communication hubs) for safety messages by
creating stable communities of vehicles, considering their
relative mobility. The authors consider the relative mobil-
ity between communities during maintenance, specifically
for community aggregation and separation.

Da Costa et al. [6] introduced a mechanism that con-
siders the VCloud formation based on the Density-Based
Spatial Clustering of Application with Noise (DBSCAN)
clustering algorithm. In short, DBSCAN identifies groups
based on the spatial density of individuals. The proposed
mechanism centrally obtains the positioning of vehicles
and executes DBSCAN to identify the VClouds. Besides,
the choice of the VCloudHead in this approach is carried
out by calculating the centroid in the spatial distribution
of the VCloud and identifying the vehicle closest to this
centroid. Peixoto et al. [28] introduced a data cluster-
ing framework to reduce traffic information at the edge
of vehicular networks by exploiting fog computing. The
proposed data clustering framework defines two methods
for the reduction of the traffic data stream: The baseline
method, which is an ordinary traffic congestion detection
approach, and two adapted clustering methods for a data
stream, namely, the Ordering Points to Identify the Clus-
tering Structure (OPTICS) and the DBSCAN.

Bute et al. [11] proposed a cluster-based cooperative
task offloading scheme for cellular-vehicle networks. In
this case, a clustering of vehicles is achieved by employ-
ing the fuzzy logic algorithm. For cluster formation and
VCloudHead selection, VCloudHead is chosen based on
a distributed algorithm. Three metrics are considered to
form VClouds: k-connectivity, link reliability, and relative
distance. These metrics are to ensure stable connectivity
between nodes for reliable communication. After receiv-
ing beacon messages, each vehicle evaluates its suitability
value and each one-hop neighbor in the communication
range. The vehicle with the highest suitability value de-
clares itself the VCloudHead.

Abbasi et al. [29] presented a fuzzy logic-based ve-
hicle weighting model for scheduling prioritized data in
VANETs, called FWDP. FWDP employs RSUs to domi-
nate the frequent topology changes and manage the data
propagation. A Fuzzy C-Means Clustering (FCMC) is

used for handling clustered vehicles that compete to utilize
the shared channel. RSUs receive prioritized data from
VCloudHeads in the proposed model, wherein VCloud-
Heads allocate scheduled service channels to weighted ve-
hicles during an interval. FWDP is equipped with a Fuzzy
Inference System (FIS) for vehicle weighting according to
the velocity and inter-vehicle distance metrics. In addi-
tion, RSUs compute the signal-to-noise and the interfer-
ence ratio (SINR) to solve the hidden terminal problem
to prevent radio interference. Also, FWDP uses mobil-
ity information to estimate vehicular density and priori-
tize the vehicles that should propagate messages. Zhao et
al. [19] proposed an adaptive vehicle clustering approach
based on a fuzzy C-means algorithm to minimize vehicle
power consumption. Specifically, the proposed algorithm
dynamically allocates the computing resources of each vir-
tual machine in the vehicle according to the popularity of
different virtualized network functions. The optimal clus-
tering number to minimize the total energy consumption
of vehicles is determined using the fuzzy C-means algo-
rithm, and the VCloudHead is selected based on a vehicle
moving direction, weighted mobility, and entropy.

Hagenauer et al. [9] presented a map-based approach
to VCloud formation that selects the most central vehicle
(close to the centroid) in the region covered by an RSU.
The formed clouds can provide services in their vicinity,
and together they form larger VClouds, allowing for more
complex services and covering entire cities. This work
shows that an efficient VCloud formation enables vehicu-
lar applications to use aggregated computational resources
efficiently. In this approach, the VCloud formation pro-
cess is limited to intersections in urban environments and
the VClouds size is limited to the communication radius
of the selected VCloudHead. Also, the primary metric to
determine VCloudHead is the vehicle position about the
intersection centroid. Wang et al. [30] proposed a net-
work representation learning to achieve accurate vehicle
trajectory clustering. Specifically, the authors dynami-
cally construct the K-Nearest Neighbor (KNN)-based vehi-
cle groups. Then they discover the low-dimensional repre-
sentations of vehicles by performing dynamic network rep-
resentation learning on the constructed network. Finally,
vehicle trajectories are clustered using Machine Learning
(ML) methods using the learned vehicle vectors. Magaia
et al. [18] introduced a vehicular clustering algorithm at
the edge of the network and an efficient message routing
approach, which is known as Group’n Route (GnR). Both
mechanisms resort to machine learning and graph metrics
reflecting the nodes’ social relationships. The performance
evaluation reveals that the clustering algorithm yields sta-
ble results with varying road scenarios.

Table 1 summarizes the main characteristics of reviewed
studies regarding grouping strategy, the assistance pro-
vided by communication infrastructures, and the use of ve-
hicular mobility information in the decision-making phase.
Based on our state-of-the-art analysis, we conclude that it
is essential to consider predicted mobility information in

3

Table 1: Summary of related works and comparison with our PREDATOR approach.

Work Grouping strategy Infrastructure-based Mobility information

Zhao et al. [26] Degree centrality ✓
Hagenauer et al. [9] Centroid ✓
Da Costa et al. [6] DBSCAN ✓
Peixoto et al. [28] OPTICS & DBSCAN ✓
Bute et al. [11] Fuzzy
Kamakshi et al. [27] Centrality metrics Relative mobility
Abbasi et al. [29] Fuzzy C-Means ✓ Vehicular density
Zhao et al. [19] Fuzzy C-Means ✓ Moving direction
Wang et al. [30] KNN + Machine Learning ✓ Trajectory
Magaia et al. [18] Social + Machine Learning ✓ Social contacts
Da Costa et al. [22] Dwell time ✓ Mobility prediction
PREDATOR Dwell time + Distance ✓ Mobility prediction

the decision process. This is because mobility prediction
provides a temporal layer for spatial data, making it possi-
ble further to explore the social relationships between ve-
hicles in the network. In addition, considering communica-
tion infrastructures is essential to increase the reliability of
control rules. In summary, our work can complement the
others since it uses the vehicles’ dwell time in VClouds for
decision-making. This knowledge is essential to improve
many processes, such as assisting in resource management,
efficient data dissemination, cooperative data processing
and perception, and location-based content aggregation.
Compared to our previous work [22], called NEMESIS,
the main improvement of this work is the inclusion of the
distance factor in the decision-making equation. In this
case, our new approach considers the balance between de-
cision metrics (distance and dwell time), effectively reduc-
ing the likelihood of disconnections between the leading
vehicle and the RSU. Additionally, this mechanism oper-
ates in city intersections, increasing the connection prob-
ability among VCloud members and enhancing resource
management capacity [13].

3. PREDATOR

As discussed above, vehicular mobility directly im-
pacts the approaches to forming VClouds due to the dy-
namic nature of moving vehicles. VCloud formation in-
volves grouping and utilizing computational resources avail-
able in moving and parked vehicles to provide services and
applications to users. However, vehicular mobility intro-
duces significant challenges, such as variations in resource
connectivity and availability and the possibility of disrup-
tions in communication between vehicles. This makes the
VCloud formation process more complex.

A solution aware of vehicular mobility can overcome
the challenges of high mobility for VCloud formation. This
approach should take real-time information about the lo-
cation, speed, and availability of vehicles into account to

perform efficient grouping strategies and task scheduling.
Additionally, after the VClouds are formed, adaptive algo-
rithms and load-balancing strategies can be implemented
to optimize the task scheduling among vehicles grouped in
these VClouds, ensuring that user demands are effectively
met even in highly dynamic environments. The formation
solution must rapidly adapt to changes in mobility condi-
tions, dynamically and intelligently allocating resources to
enhance the performance and reliability of the VCloud.
Thus, vehicular mobility prediction information can be
leveraged as an advantage for forming more robust and
resilient VClouds.

With that in mind, and aiming to overcome the chal-
lenges posed by vehicular mobility, this section describes
the details of PREDATOR, where we consider a scenario
composed of multiple VClouds assisted by RSUs. PREDA-
TOR considers a mobility prediction model for selecting
the most stable vehicles to coordinate each VCloud. We
present some essential assumptions, detail the system ar-
chitecture used, and define the problem. Finally, we present
the PREDATOR operation with a description of the algo-
rithms that compose it.

3.1. Assumptions
The following assumptions are made for PREDATOR

to work properly.

• Each vehicle can communicate with other devices
through V2X communication.

• Each vehicle has limited computational resources,
such as processing power and storage capacity, that
can be shared with other interested entities.

• Every vehicle under RSU coverage participates in the
VCloud formation process. That is, we do not con-
sider selfish vehicles. Also, all vehicles are ready to
offer their computing power and storage capacity to
cloud services.

4

• Each vehicle is aware of its real-time location through
the global navigation satellite system, such as Global
Positioning System (GPS).

• A VCloud starts when an RSU selects a new VCloud-
Head, and this VCloudHead receives the warning
message from an RSU.

3.2. Network and System Model
We consider a scenario composed of x vehicles, where

each vehicle ui ∈ U has a unique individual identification
(i ∈ [1, x]) and is equipped with an IEEE 802.11p compli-
ant radio transceiver, which enables V2X communication.
Also, we consider k RSUs deployed in some intersections
in the city. Intersections are appropriate for setting up
VClouds as vehicles traveling on multiple road segments
can meet at one place [13]. Vehicles periodically send bea-
con messages on the network, and thus an RSU collects
this information in real-time to build the knowledge nec-
essary for its decision-making. It is important to highlight
that Information such as position, speed, direction, and
computational resources are added to the beacon message.
Besides, we denote each VCloud as vj ∈ V = {v1, . . . , vm},
which consists of a subset of vehicles V ⊂ U capable of
sharing computational resources, such as processing power
and storage capacity. An RSU assists a VCloud directly,
so VClouds’ number equals the number of RSUs.

In this scenario, vehicles can take on two roles. The
first role is VCloudHead, representing the vehicle elected
as the leader of VCloud by an RSU. The second role is
VCloudMember, the vehicles that will share their comput-
ing resources on the network through a VCloud. There-
fore, when a vehicle is associated with an RSU, it auto-
matically becomes part of the VCloud assisted by that
RSU. The primary function of an RSU is to select the ve-
hicle leading this VCloud. Considering the communication
range of RSUs is greater than that of vehicles, the lead ve-
hicle can be n hops away from the other VCloud members.
After the RSU selects and informs the VCloudHead of this
VCloud, this vehicle notifies the other VCloudMembers
through broadcast messages.

Finally, after an RSU selects its local VCloudHead, it
provides this information to a network controller. The con-
troller has a connection with all the RSUs, having a global
view of the network and all VClouds. In this case, the con-
troller does not actuate directly in the VCloud formation
process. It is responsible only for information aggrega-
tion sent by RSUs after ending the VCloud formation pro-
cess. So, VANET applications that need computational
resources can request these resources on the network, and
the controller decides which VCloud runs the tasks of these
applications [6].

Figure 1 presents the system architecture. As in a mod-
ern scenario, some RSUs are deployed in the city. Each
RSU is responsible for covering a specific area, which in
this case is a road intersection. In this way, vehicles in the
intersection are covered by the RSU, which aggregates and

Controller

Intersection A Intersection B

VCH VCM 1-hop n-hops RSU

Figure 1: System architecture (VCH: Vehicular Cloud Head
(VCloudHead); VCM: Vehicular Cloud Member (VCloudMember).

maintains knowledge of how many vehicles are under their
coverage. Each RSU can also apply algorithms to predict
vehicular mobility and estimate vehicles’ dwell-time under
its coverage, thus choosing the most stable vehicle to lead
this VCloud (VCloudHead). Besides, it is considered a sce-
nario where the RSU has a higher communication range
than vehicles. This way, V2V communication within the
VCloud can occur over more than one hop.

In summary, PREDATOR considers two phases in the
VCloud formation process, namely communication and in-
formation. The communication phase receives and aggre-
gates contextual information from neighboring vehicles.
At this phase, the RSU maintains a neighborhood struc-
ture with all vehicles in its coverage and manages them
based on the receiving signaling messages (beacons). Each
beacon message contains the vehicle’s information, such
as position, speed, direction, and route. The information
phase is responsible for informing the new VCloudHead
about its role in the network. In this way, the RSU sends a
message containing the VCloud identification, the VCloud-
Head identification, and the number of resources available
in that VCloud. After that, the VCloudHead informs its
neighboring vehicles, which now become VCloudMembers,
and those VCloudMembers relay this warning message.
With each message retransmission, the number of hops
is incremented so that the receiving knows its distance to
the VCloudHead.

3.3. Problem definition
In essence, mobility prediction algorithms estimate a

given vehicle’s position from current and/or past infor-
mation. With the forecast information, it is possible to
know if, in a future moment, the vehicle will be part of
a specific VCloud. It is essential to treat mobility as a
time series, where each measurement constitutes an input
provided to the predictor engine to adjust the prediction
model [31, 32]. Also, the forecast granularity can be de-
fined based on the VCloud formation intervals.

The vehicular mobility pattern makes it possible to
model a mathematical system to predict the future geo-
graphic positions of nodes [33]. Thus, consider Pu(t) =
(Xu(t), Yu(t)) being the vehicle’s position at the current

5

time t and Pu(t+1) = (Xu(t+1), Yu(t+1)) the vehicle’s posi-
tion at time t+1. As mentioned, geographic position data
can be consulted through digital maps and GPS. There-
fore, when vehicles associate with an RSU and provide in-
formation, such as current location, speed, direction, and
available resources, the RSU can aggregate this informa-
tion and create the VCloud for location-based services.
However, an RSU maintains a macroscopic view of the
VCloud it manages.

Building decision-making closer to these vehicular re-
sources is necessary to guarantee real-time requests’ fulfill-
ment. In this way, the RSU selects the most stable vehicle
(with higher dwell time) to lead the VCloud, and this vehi-
cle is called VCloudHead. However, this VCloudHead def-
inition is one of the critical points in the VCloud formation
process. This VCloudHead will receive the rules from the
controller and manage the task scheduling/resource allo-
cation among the VCloudMembers. The system’s overall
efficiency can be degraded depending on the selection cri-
teria. The high number of VCloudHead changes leads to
an increased number of warning messages in the network
and, consequently, a high number of packet collisions. In
addition to degrading the efficiency of the VEC system, it
will flood the network with unnecessary transmissions.

3.4. PREDATOR’s operation
Based on the vehicle’s predicted positions Pu(t+n), con-

sidering a T time window, PREDATOR can check if each
position p ∈ Pu(t+n) is under the coverage of a given RSU.
As the prediction returns the positions for a given time
window T , the vehicle coverage time is obtained by incre-
menting it by a 1-time unit if and only if the position is
under the coverage of an RSU. In short, an RSU checks its
distance to each predicted position and computes a unit
of time for coverage if the result is less than or equal to
its communication range. It is important to note that
PREDATOR can work with any model for mobility pre-
diction existing in the literature, as long as it returns good
prediction results. Yet, an RSU maintains a neighborhood
structure to store information about vehicles in its cov-
erage. An RSU checks if this vehicle is already in this
structure with each beacon message receipt. Case nega-
tive, the vehicle is added, along with information present
in the beacon.

After aggregating vehicle information, the RSU decides
who will be the VCloudHead of its VCloud, applying the
Equation (1) for each vehicle. The calculation is sub-
tracted from 1 to keep it in the range [0, 1]. PREDATOR
selects the vehicle with a maximum Su in each VCloud.

Sui = 1−
(
α× Ā+ β × B̄

)
(1)

where α and β represent weights to define the importance
of the metrics (Ā and B̄) in the equation. That is, if
α = 0.8 and β = 0.2, it means that portion Ā has greater
relevance than portion B̄. The portion Ā represents the
distance between the vehicle and the RSU, as shown in

Equation (2). In this case, the vehicle closest to the RSU
will be prioritized to guarantee greater stability in the con-
nection. Rmax represents the RSU’s estimated communi-
cation range and dist is the distance from the vehicle ui

to the RSU.
Ā =

(
dist

Rmax

)
(2)

On the other hand, portion B̄ of the Equation (1) de-
fines how the vehicle’s dwell time in the RSU’s coverage is
considered. In this case, the vehicle with the longest dwell
time will be prioritized, hence the division between 1 and
DwellT ime shown in Equation (3). DwellT ime is the
dwell time calculated by checking the predicted positions.

B̄ =

(
1

DwellT ime

)
(3)

To illustrate the calculation of Equation (1), imagine
that vehicles u1 and u2 are in the RSU’s coverage. The
RSU has a Rmax = 250m. After the beacon exchange
and the prediction process, RSU knows that vehicle u1

has dist = 50m and DwellT ime = 10s and the vehicle u2

has dist = 100m and DwellT ime = 12s. Also, parameters
α and β are set to 0.5. In other words, both are equally
important in this example.

Applying the equation, we have for vehicle u1:

Su1
= 1−

(
0.5×

(
50

250

)
+ 0.5×

(
1

10

))

= 1− (0.5× 0.2 + 0.5× 0.1)

= 1− (0.1 + 0.05)

= 1− (0.15)

= 0.85

Also, we have for vehicle u2:

Su2 = 1−
(
0.5×

(
100

250

)
+ 0.5×

(
1

12

))

= 1− (0.5× 0.4 + 0.5× 0.084)

= 1− (0.2 + 0.042)

= 1− (0.242)

= 0.758

Therefore, RSU selects vehicle u1 to lead its VCloud
because it has a higher S value. This means that even
the vehicle having a lower DwellT ime, the possibility of
an intermittent connection between the lead vehicle and
the RSU is minimized, also reducing the need for control
messages on the network.

Figure 2 presents a visual example with more details of
the proposal. The goal is to know the vehicles’ dwell time
under the RSU coverage and, consequently, its dwell time
in the VCloud. In this example, the vehicle remains 25 s in
the RSU of Intersection A. As some prediction methods re-
quire a base of past information to make future estimates
and vehicles transmit beacons with a frequency of 1Hz,

6

each RSU stores the mobility information of all vehicles in
its coverage to build a dataset for the prediction method.
That is, if the prediction is performed at the instant t = 15
with a time window of 10 s, the information for building
the database will range from t = 0 to t = 15 and, thus, it
will be identified that this vehicle will no longer be part
of the VCloud of Intersection A at the instant t = 25.
The RSU only has local knowledge of its coverage. How-
ever, the controller can aggregate the local knowledge of
each RSU and build its global knowledge. In this VCloud
formation stage, the controller has no role other than to
keep the information of each RSU for eventual resource
orchestrations.

t = 5

t = 0

t = 10

Intersection B

Trajectory Prediction

Intersection A

t = 15

t = 20

t = 30

t = 25

t = 35

Figure 2: PREDATOR’s microscopic vision.

In this way, Algorithm 1 shows an abstraction of PREDA-
TOR. The set of vehicles Nk and the time window T for
the forecast are provided to PREDATOR. Initially, the
algorithm checks that the set Nk is not empty, which
means some vehicles are in the RSU coverage. If Nk is
empty, the resources of this VCloud are indicated as 0,
and PREDATOR informs the controller about this infor-
mation (Line 19). Otherwise, each vehicle is verified and
its shared resources are aggregated for the VCloud (Line
7). The predicted positions are added to a temporary set
predPositions that contains the vehicle identification and
the list of estimated positions. In this step, we consider
the ARIMA model with the vehicle’s past positions dataset
and time window T , which indicates how many time units
the model will try to predict (Line 8). As mentioned ear-
lier, the distance between the vehicle and the RSU is cru-
cial in decision-making. In this way, this distance is cal-
culated and stored (Line 9). All predicted positions are
verified, and if one of these positions is within RSU cover-
age, a dwell time in the VCloud is incremented in a 1-time
unit (Lines 11 and 13). With the distance dist and dwell
time DwellT ime calculated, the Equation (1) is applied,
and the vehicle score is stored in a control list S (Lines 14
and 15). After all checks, PREDATOR selects the vehicle
with the highest score to become VCloudHead of the re-
spective RSU k (Line 16). Finally, with the VCloudHead
identified, the RSU sends the message on the network and
informs the controller about the created VCloud (Lines 17
and 18).

On the other hand, the Algorithm 2 presents the pro-

Algorithm 1: Abstraction of PREDATOR
Input: vehicles set Nk, time window T

1 S ← ∅
2 rsu← Roadside Unit (RSU) k’s identifier
3 resource← 0
4 V CloudHead← NULL
5 if Nk ̸= ∅ then
6 foreach u ∈ Nk do
7 resource← resource+ u.resource
8 predPositions← ARIMA(u.dataset, T)

▷ Current distance between u and rsu

9 dist← distance(u.pos, rsu.pos)
10 DwellT ime← 0
11 foreach p ∈ predPositions do
12 if distance(p, rsu.pos) ≤ rsu.Rmax

then
13 DwellT ime← DwellT ime+ 1

▷ Use DwellT ime and dist in this point
14 u.score← Equation (1)

▷ Store the vehicle’s score
15 S.append(u.score)

16 V CloudHead← max{S}
17 SendBroadcastMsg(rsu, V CloudHead)
18 SendStatusMsg(rsu, V CloudHead, resource)

19 else
20 SendStatusMsg(rsu, V CloudHead, resource)

cess when the VCloudHead receives the RSU warning mes-
sage. In our system, vehicles can assume three states: (i)
Undefined (UNDEF), which means undefined state; (ii)
VCloudMember, which represents VCloud’s member vehi-
cles; and (iii) VCloudHead, which represents the leader of
the VCloud. Before any process, all vehicles have been set
to UNDEF. Therefore, when receiving a broadcast mes-
sage from the RSU, the vehicle checks its current status,
and if it is UNDEF, it means that the vehicle is not yet
part of any VCloud (Line 2). The vehicle keeps the RSU’s
id received in the broadcast message (Line 3). Then, the
vehicle checks if its identification number is included in this
message. If so, its state changes to VCloudHead (Line 5)
and starts the leadership in this VCloud (Line 6). The
VCloudHead must inform its neighbors about its new role
in the network. For this, it creates a VCloudHead message,
adds its identification, the identification of the RSU that
supports it, the number of hops to the VCloudHead (which
in this case is 0 because it itself is the VCloudHead), and
sends the message on the network (Lines 7 to 10). If, when
receiving a broadcast message from the RSU, the vehicle’s
status is not UNDEF, it checks if it already acts in the role
of VCloudHead (Line 12). The vehicle checks if it is still
listed as a VCloudHead, and if not, it ends its leadership
at this point (Line 13 to 15).

Additionally, to illustrate the entire message exchange

7

Algorithm 2: VCloudHead receiving broadcast
message from the RSU
Input: msg

1 if broadcast message from the RSU then
2 if status = UNDEF then

▷ Checks based on RSU’s id
3 myRSU ← msg.rsu
4 if myId = msg.V CloudHead then
5 status← V CloudHead
6 VCloudStarted(currentTime())

▷ VCloudHead message
7 msg.V CloudHead← myId
8 msg.RSU ← myRSU
9 msg.hops← 0

▷ Send message to neighbors
10 SendVCloudHeadMessage(msg)

11 else
12 if status = V CloudHead then
13 if myId ̸= msg.V CloudHead then
14 status← UNDEF
15 VCloudDied(currentTime())

process on the network, some actions must be taken when
the VCloudHead informs its neighbors about its role in
the VCloud. Algorithm 3 presents an abstraction of this
phase. The receiving vehicle has two possibilities when
receiving a message from another vehicle. The first is that
this neighbor is a VCloudHead and the second is that it is a
VCloudMember. However, the actions taken in both cases
are the same. First, the number of hops in the message is
verified to limit retransmissions in the information region
of interest, which is the coverage of the RSU (Line 1).
After that, the vehicle checks if its state is UNDEF or
VCloudMember (Line 2). If so, the vehicle creates a relay
message and updates some information, such as its status
becomes VCloudMember, stores its current VCH, stores its
current RSU, and increases the number of hops in the relay
message (Lines 3 to 7). As the environment is distributed
at this stage, the vehicle may receive this message several
times from other neighbors. Hence, checking whether the
vehicle has retransmitted this message at this interval is
necessary to reduce the number of duplicate messages on
the network (Lines 8 and 9).

Regarding the mobility prediction, we consider the ARIMA
model for our evaluations. ARIMA is a statistical model
for analyzing and predicting time series and works by tak-
ing series values and making them stationary if necessary.
A stationary time series has no trend, and the amplitude
of its variations around the mean is constant. Future series
values are considered a linear combination of past values
and past moving averages in the ARIMA model. ARIMA
is described as a 3-tuple (p, d, q), where p is the number of
past measurements weighted in the estimate, d is the num-

Algorithm 3: Receiving relay message
Input: msg
▷ Retransmissions just one hop beyond the RSU’s

Rmax

1 if msg.hops ≤ 3 then
2 if status ̸= V CloudHead then
3 Create relay message msg
4 Update status for VCloudMember
5 Store my current VCloudHead
6 Update my current RSU
7 Increment number of hops by 1

▷ Send a message if you haven’t sent it yet
8 if message not yet sent then
9 SendBroadcastMsg(msg)

ber of differentiation series to make statistically stationary,
and q is the number of previous moving averages. The ba-
sic formulation of the model is given by Equation (4). We
denote past terms as l, past moving averages as µ, while
θ and Φ are individual weights for each term and will be
model trained.

lt = θ0 +Φ1lt−1 +Φ2lt−2 + · · ·+Φplt−p (4)
−θ1µt−1 − θ2µt−2 − · · · − θpµt−p

In summary, the number of past value terms and mov-
ing averages depends on the series considered. Some series
mainly depend on weighted past values and do not need
moving average terms. The model can be represented by
the ARIMA(3, 1, 0) notation, which means three previous
terms are used, a differentiation is performed, and previous
moving averages are not considered. ARIMA is used for
single-variable time series forecasting, requiring a differ-
ent latitude and longitude training step for vehicles [34].
Therefore, the model is trained for each vehicle and its
respective geographic coordinates [31].

3.5. Computational complexity
The PREDATOR’s time complexity is analyzed as fol-

lows. As shown in Algorithm 1, the time complexity is
mainly dominated by the ARIMA method runtime, which
is estimated as O(m) [35], where m is the number of ob-
servations in the input data. In summary, the time com-
plexity of ARIMA depends on the specific method used
to fit the ARIMA model to the input data. The most
common method for fitting an ARIMA model is Maxi-
mum Likelihood Estimation (MLE), which is computa-
tionally efficient and typically considered to have poly-
nomial time complexity. In our evaluation, we used the
library statsmodels.tsa.arima.ARIMA from the Python
language, which uses the MLE to estimate the parameters.

Additionally, with the verification of each vehicle in the
RSU’s coverage, we have a time complexity of O(n), where
n is the number of vehicles within that RSU (|Nk|). Also,

8

the predicted positions of each vehicle are also checked,
resulting in a time complexity of O(pred). However, pred
takes a value equal to the prediction window size T , which
is fixed and makes it a constant. The search for the max-
imum value of S performed in line 3 also employs a time
complexity of O(n). Assignment and comparison opera-
tions do not directly influence the time complexity calcu-
lation. Therefore, it can be noted that PREDATOR op-
erates with a time complexity of O(n×m) +O(n), which
can be reduced to O(n ×m). In summary, PREDATOR
is a mechanism that operates in polynomial time and is
efficient enough to operate in practical scenarios.

4. Performance Evaluation

This section describes the methodology and metrics
used to evaluate PREDATOR performance in a VEC en-
vironment. First, we show the simulation environment,
including implementation, scenario parameters, and eval-
uation metrics. Second, we discuss the obtained results.

4.1. Experimental settings
The simulation platform to evaluate the performance

of the designed mechanism is composed of the Simulator
of Urban Mobility (SUMO) 1.11.0, the network simulator
OMNeT++ 5.6.1, and the vehicular networking framework
Veins 5.2 [36], which implements the IEEE 802.11p proto-
col stack for V2X communication and signal attenuation.

We consider two mobility traces to establish vehicular
evaluation scenarios. The first trace considers a Manhat-
tan Grid (Grid) scenario [37] with 1 km2 area, as shown in
Figure 3(a). In this case, the traffic behavior is configured
to use the Krauss car-following model for its accuracy and
simplicity [38]. Second, we consider the realistic mobility
trace of the Luxembourg city (LuST) [23, 13], as shown
in Figure 3(b). We selected a 2 km2 area with 5 intersec-
tions connecting the city center of Luxembourg city to a
freeway. The simulations in this scenario start at 08 am
(28 800 s) because it represents one of the times with high
vehicular traffic. Also, we conducted 33 and 5 simulations
with different randomly generated seeds for the Grid and
LuST scenarios, respectively. All results show the values
with a confidence interval of 95%.

In both scenarios, RSUs have a higher communication
range than vehicles. For RSUs, we consider the transmis-
sion power equal 6.1mW. Together with the Two-Ray
ground propagation model, these parameters provide a
communication range of 250m. Also, we use the frequency
band of 5.89GHz, a bandwidth of 10MHz, and a bit rate
of 6Mbit/s at the MAC layer [39]. For vehicles, we only
change the transmission power to 2.2mW to give a com-
munication range equal 150m. The beacon frequency was
1Hz [15]. Simulation time was 200 s for Grid and 500 s
for the LuST scenario. After the simulation gets stable
(i.e., after a warm-up period defined as 100 s), the VCloud
formation process starts. We setup 5 RSUs at the main

intersections in all scenarios, as indicated by red points in
Figures 3(a) and 3(b).

We consider an ARIMA(2,2,1) configuration in these
scenarios. This means that we consider two past values,
the series is differenced twice to achieve stationarity, and
there is one moving average term. We utilize a Grid-
Search estimator to find the optimal parameters for the
model [40]. At each VCloud formation interval, set at 5 s,
we save the past mobility data to use as input for future
predictions. The 5-second interval is acceptable, as it al-
lows analyzing changes in the network topology without
drastically compromising the prediction errors imposed by
more extended intervals [41, 42]. The prediction model
is implemented in Python 3.8 and connected to Veins us-
ing the os.System() interface in the C++ language. We
set α = 0.3 and β = 0.7, meaning that the dwell time in
RSU coverage significantly impacts the relative distance
between the vehicle and RSU. All relevant simulation pa-
rameters were considered based on the state-of-the-art and
are listed in Table 2.

The main goal of our simulation-based evaluations is
to assess the performance of PREDATOR compared to
other state-of-the-art approaches, namely DEGREE [26,
27], CENTROID [9], and SPATIAL [6, 28]. Additionally,
we compare the performance of PREDATOR with its pre-
vious version, called NEMESIS [22]. We include an ap-
proach that utilizes actual knowledge about the vehicles’
mobility, referred to as OPTIMAL. In line with this, we
evaluate the proposed mechanism using seven metrics for
performance assessment, which are categorized into four
perspectives or assessments. The details of these assess-
ments are described below.

1. Mobility prediction assessment:

• Root Mean Square Error (RMSE) quantifies the
difference between real data and predicted data.
This metric is widely used to measure the per-
formance of predictors.

• Prediction time represents the time required for
the model to return the result. Considers train-
ing, testing, and prediction time. In this case,
we used an Intel(R) Xeon(R) CPU X5650 (24
× 2.67GHz) with Linux architecture x86-64.

2. VCloud formation assessment:

• Lifetime is the accounting of how many time
units the VClouds lasted. A high VCloud life-
time value means that the leader selected for
this VCloudHead is stable, and the VCloud-
Head has not been changed frequently.

• Leader changes are the number of times the ve-
hicle is no longer VCloudHead in the VCloud.
The high number of leader changes implies that
vehicles selected as VCloudHead were not the
most stable.

3. Scalability assessment:

9

(a) Manhattan Grid scenario (b) Luxembourg (LuST) scenario

Figure 3: Simulation scenarios considered.

• Sent packets shows the total number of trans-
mitted messages by the vehicles in the network.
This result must be interpreted with other met-
rics. For example, the approaches must send
fewer packets in the network, maintaining their
high performance [15].

• Packet collision shows the total number of pack-
ets lost during message transmission. That oc-
curs due to the busy communication channel
and bit errors in received packets.

4. Scheduling assessment:

• Scheduling success shows the total number of
tasks that were successfully serviced. This eval-
uation is essential because it shows the impact
of the VClouds’ stability in using the aggre-
gated computing resources.

4.2. Simulations results
This subsection presents and discusses the simulation

results, separated into four perspectives, namely: mobility
prediction, VCloud metrics, scalability metrics, and task
scheduling metrics.

4.2.1. Mobility prediction Assessment Perspective
Figure 4(a) presents the RMSE results obtained with

the considered models, namely ARIMA, Unmodified Long
Short Term Memory (Vanilla-LSTM), and Support Vector
Regression (SVR), in the prediction data. This assessment
calculates the average RMSE among all vehicles in the sce-
nario. However, please note that Figure 4(a) exemplifies
the RMSE obtained for only one vehicle. The figure shows
that the predictions provided by ARIMA achieve an av-
erage RMSE of approximately 2.12. In comparison, the
predictions provided by Vanilla-LSTM and SVR experi-
ence more significant degradations, with RMSE values of
8.71 and 27.39, respectively. ARIMA performs better than
other models when a smaller amount of past data is con-
sidered. This is because applying moving averages and dif-
ferentiation becomes more straightforward and faster with

Table 2: Simulation parameters.

Parameter Value

Channel 5.89GHz

Bandwidth 10MHz

Data rate 6Mbit/s

Transmission power (RSU) 6.1mW

Communication range (RSU) 250m

Transmission power (Vehicle) 2.2mW

Communication range (Vehicle) 150m

Beacon transmission rate 1Hz

VCloud formation interval 5 s

Number of RSUs 5
α, β 0.3, 0.7
ARIMA (p, d, q) (2,2,1)
Vehicle speed limits (Grid) 15m/s

Simulation area (Grid) 1 km2

Simulation time (Grid) 200 s

Vehicle speed limits (LuST) From the LuST [23]
Simulation area (LuST) 2 km2

Simulation time (LuST) 500 s

a smaller dataset. Additionally, ARIMA utilizes predicted
data to adjust subsequent predictions, serving as an error
correction mechanism.

Figure 4(b) presents the prediction time results for the
considered approaches. In this evaluation, SVR exhibits
the shortest turnaround time for the prediction results,
followed by ARIMA and Vanilla-LSTM. However, it is es-
sential to compare this result with the RMSE results pre-
sented in Figure 4(a). Finding a trade-off between the
two results is crucial. Based on the results, the ARIMA
model demonstrates more robust performance in our mo-
bility scenarios, achieving the best RMSE with a reason-
able prediction time of under 2 s. Therefore, we utilized
the ARIMA model to assist our VCloud formation process,
setting the time window T to 5 s. Since it is an external
process, the prediction time does not impact the dynamics

10

of the simulation. However, we consider running the pre-
dictions 2 s before each interval to account for the model’s
processing time. Afterward, we adjust the predicted value
with the actual value received from the RSU.

ARIMA Vanilla-LSTM SVR
0

5

10

15

20

25

30

Ro
ot
 M
ea

n
Sq

ua
re
d
Er
ro
r (
m
)

2.12

8.71

27.39

(a) Root Mean Square Error (RMSE)

ARIMA Vanilla-LSTM SVR
0

1

2

3

4

5

6

Pr
ed

ict
io

n
tim

e
(s
)

1.8205

5.9505

0.4605

(b) Processing time

Figure 4: Prediction results on a single vehicle’s data.

4.2.2. VCloud formation Assessment Perspective
Figure 6 shows the results obtained for VCloud met-

rics, such as Lifetime and Leader changes, considering the
two different mobility traces. First, Figures 6(a) and 6(c)
show the VClouds’ lifetime results for both scenarios. It
can be noted that VClouds formed with PREDATOR have
longer lifetimes in all observed scenarios. That is, selecting
the vehicle that will spend the most time in RSU coverage
makes the VCloud exist during that vehicle’s travel time,
which is different from the other compared approaches.
Also, the number of leader changes is decreased when
PREDATOR is used in all scenarios. This result is ex-
pected because if the vehicle with the longest time in RSU
coverage is selected, the leader change will only occur when
that vehicle leaves the intersection covered by the RSU.

In addition, we compare all approaches with a solution
that has actual knowledge of vehicle mobility, called OP-
TIMAL. The decision mechanism used in this approach
is the same as the one used by PREDATOR. The differ-
ence is that the optimal strategy does not have prediction
errors in vehicle mobility information. Thus, we can con-
sider the OPTIMAL approach as the baseline. In the Grid
scenario, PREDATOR maintains an average lifetime of
18.69 s compared to NEMESIS’s 14.95 s and CENTROID’s

13.57 s. Yet, the observed optimal lifetime is 24.3 s. Simi-
larly, in the LuST scenario, PREDATOR maintains a life-
time of 29.33 s compared to NEMESIS’s 24.56 s and the
SPATIAL’s 19.99 s. The OPTIMAL approach achieved
36.66 s of lifetime in this scenario. In this evaluation,
followed by the result achieved by NEMESIS, SPATIAL
is found to be superior to DEGREE and CENTROID
approaches. This result can be justified by the vehicu-
lar dynamics of the realistic scenario, which exhibit fewer
drastic changes in vehicle positioning, allowing the spa-
tial information to remain valid for a longer duration. In
summary, PREDATOR shows an overall improvement of
18.14%, 40.40%, 49.48%, and 60.59% in the VCloud life-
time metric over NEMESIS, SPATIAL, CENTROID, and
DEGREE, respectively.

Complementarily to the experiment shown in Fig-
ure 6(a) and to reinforce the impact of vehicular mobility
in the context of VCloud formation, we conducted an ex-
periment where the vehicle speed was varied at 0m/s (no
mobility), 15m/s (low mobility), and 25m/s (high mobil-
ity) in the Manhattan Grid scenario. As the mobility of
the Grid scenario is synthetic, changes in the vehicle speed
are entirely possible. Therefore, Figure 5 displays the
VClouds’ lifetime using all VCloud formation approaches.
Naturally, the performance of all approaches degrades as
the vehicle speed increases since selecting vehicles under
these conditions becomes much more challenging due to
high topological changes. However, it can be observed that
PREDATOR remains superior to the other approaches in
all speed variations, except for the OPTIMAL approach,
which contains vehicle mobility information without pre-
diction errors. Furthermore, when mobility is static (vehi-
cle speed equal to 0m/s), all approaches perform similarly.
This is because the initial vehicle chosen as the leader will
retain its leadership throughout the simulation time. In
other words, since mobility remains static, no other vehi-
cle with better rates (degree centrality, closer to the cen-
troid, greater spatial density, etc.) will be chosen as the
new leader.

0 5 25
Vehicle Speed (m/s)

101

102

Lif
et
im
e
(s
)

Centroid
Degree

Spatial
NEMESIS

PREDATOR
Optimal

Figure 5: An example of how vehicular mobility impacts all VCloud
formation solutions

In addition, Figures 6(b) and 6(d) show the general

11

Cen
tro

id
De

gre
e

Spa
tial

NE
ME

SIS

PRE
DA

TO
R
Op

tim
al

0

5

10

15

20

25
Lif

et
im

e
(s
)

(a) Grid: VCloud lifetime

Cen
tro
id
De
gre
e
Spa

tial

NE
ME
SIS

PRE
DA
TO
R
Op
tim
al

0

5

10

15

20

25

30

VC
H
ch
an
ge
s (
#)

(b) Grid: Leader changes

Cen
tro
id
De
gre
e
Spa

tial

NE
ME
SIS

PRE
DA
TO
R
Op
tim
al

0
5

10
15
20
25
30
35
40

Lif
et
im
e

(s
)

(c) LuST: VCloud lifetime

Cen
tro
id
De
gre
e
Spa
tial

NE
ME
SIS

PRE
DA
TO
R
Op
tim
al

0

20

40

60

80

100

120

140

VC
H
ch

an
ge

s (
#)

(d) LuST: Leader changes

Figure 6: VCloud formation results considering different mobility traces.

stability of the created VClouds. It can be observed that
PREDATOR spends more time in the RSU coverage, which
implies greater stability in VCloud management. SPA-
TIAL performs the worst in the Grid scenario as it selects
vehicles based on spatial information, and the synthetic
mobility in this scenario can have drastic directional and
positional changes. On the other hand, in the LuST sce-
nario, the worst-performing approach is DEGREE. This
result indicates a high rate of change in vehicles with the
highest degree coefficient indices (largest neighborhood).
Given its positioning changes, the neighborhood density
of this vehicle also changes with more frequency. That
is, specifically in this area considered, the flow of vehi-
cles is high, and the vehicular social contacts accompany
this dynamic. In the Grid scenario, PREDATOR experi-
ences an average of 13 leader changes compared to NEME-
SIS’s 16 changes and DEGREE’s 21 changes. Similarly, in
the LuST scenario, PREDATOR has 41 leader changes
compared to NEMESIS’s 62 changes and SPATIAL’s 81
changes. The optimal approach has 6 leader changes in
the Grid scenario and 23 changes in the LuST scenario.
Overall, PREDATOR employs improvement in this metric
by 26.64%, 50.91%, 52.31%, and 53.38% over NEMESIS,

SPATIAL, CENTROID, and DEGREE, respectively.

4.2.3. Scalability Assessment Perspective
Regarding scalability metrics, Figures 7(a) and 7(c)

present the results regarding the number of packets sent
on the network by the evaluated approaches. In this eval-
uation, only the messages transmitted among vehicles are
considered, as the number of sent packets by the RSU is
the same in both approaches, given that the VCloud for-
mation intervals are identical. However, the number of
sent packets is related to leader changes. PREDATOR
only sends a leader message if the VCloudHead changes
from one interval to another (Algorithm 2). This strategy
significantly reduces the number of sent packets. Thus, we
observe that PREDATOR transmits fewer packets on the
network than the other approaches. This result can be at-
tributed to the findings shown in Figures 6(b) and 6(d), as
a smaller number of VCloudHead changes leads to fewer
warning messages being sent on the network. The opti-
mal approach employs approximately 2100 sent packets
in the Grid scenario and around 5640 sent packets in the
LuST scenario. In summary, PREDATOR demonstrates
improvements of 28.75%, 53.96%, 55.38%, and 55.94%

12

over NEMESIS, DEGREE, SPATIAL, and CENTROID,
respectively.

Figures 7(b) and 7(d) show the number of packet col-
lisions. It is important to note that all approaches utilize
a Flooding algorithm to disseminate warning messages on
the network [15]. We chose this approach due to its sim-
plicity and generally good performance in terms of de-
livery rate on the network. However, maintaining sta-
ble leader selection already leads to significant improve-
ments in network performance metrics. PREDATOR ex-
hibits the lowest number of packet collisions on the net-
work since it transmits fewer warning messages. The OP-
TIMAL approach results in approximately 618 collided
packets in the Grid scenario and around 2000 in the LuST
scenario. Therefore, PREDATOR demonstrates improve-
ments of 30.58%, 45.86%, 47.48%, and 50.28% over NEME-
SIS, DEGREE, SPATIAL, and CENTROID, respectively.

4.2.4. Scheduling Assessment Perspective
Considering the created VClouds’ stability, it was nec-

essary to simulate a practical application of this scenario.
The application concerns the use of vehicular computa-
tional resources that were aggregated in the VCloud For-
mation process. This use is called task scheduling and
must consider the processing time constraints of each task.
As there is no order restriction for executing the tasks that
arrive at the system, abstractions of Bag-of-Tasks applica-
tions were considered for this evaluation.

In this sense, the scheduling evaluation was modeled
as follows: there is a set of tasks where each task has a
processing time necessary for its completion. When a task
is scheduled, its scheduling success is only computed when
the total processing time is reached. If the VCloudHead
changes, the task is automatically canceled, and its inter-
ruption is computed. The controller present on the net-
work is responsible for selecting which VClouds will pro-
cess a given set of tasks. On the other hand, the VCloud-
Heads are responsible for managing the processing of these
tasks between their VCloudMembers.

Algorithm 4 presents an abstraction of what happens
in the VCloudHead vehicle when it receives the schedule
message from the controller. VCloudHead starts a timer
to control when the task completes its execution (Line
1). Therefore, VCloudHead adds a time unit to the timer
(Line 3). As the VCloud formation process is independent
of the scheduling process, verifying if the current vehicle is
still VCloudHead of this VCloud at each instant is neces-
sary. If the vehicle is VCloudHead, it checks if the control
timer is equal to the task’s processing time and, if so, the
task has been completely executed in the VCloud (Line 5).
VCloudHead informs the controller about the execution of
the task and computes the scheduling success. However,
if the vehicle is no longer VCloudHead during the task
execution process, it is checked if its control timer is less
than the task processing time and, if so, the task was in-
terrupted (Line 7). The vehicle informs the controller and
accounts for the schedule failure.

Algorithm 4: Task scheduling control in
VCloudHead
Input: schedule message msg with VCloud

information, such as computational
resources and number of VCloudMembers

▷ VCloudHead receives scheduling message
▷ VCloudHead starts a control timer

1 scheduleT imer ← 0
2 foreach time slot do
3 scheduleT imer ← scheduleT imer + 1
4 if status = V CloudHead then
5 if scheduleT imer = msg.time then

▷ Complete task execution
▷ Informs the controller through RSU
▷ Scheduling success

6 else
7 if scheduleT imer ̸= msg.time then

▷ Stop task execution
▷ Informs the controller through RSU

8 scheduleT imer ← 0

The simulation settings were the same used in the eval-
uation of VCloud formation presented in the previous sec-
tion. However, to assess the efficiency of VClouds, we
consider applications with processing times ranging from
5 s to 10 s. As the objective is to evaluate the efficiency of
VClouds about stability, other metrics besides the time of
tasks and VClouds were not considered. The number of
tasks was varied by 10, 15, 20, 25, and 30.

Figure 8 presents the results for task scheduling assess-
ment. We can see that the results obtained corroborate
the results obtained in evaluating the VClouds formation
about the average lifetime of the VClouds. That is, the
longer the lifetime of the VCloud, the greater the chance
of it serving a greater number of tasks in the system. Not
only that, but VCloud stability is crucial to increasing the
percentage of successfully processed tasks. As expected,
as the number of tasks grows in the system, the chance
that tasks fail to be scheduled increases. As we can see,
the number of tasks scheduled in the LuST scenario is
higher than in the Grid scenario due to the greater sta-
bility (lifetime and leader changes) of the VClouds cre-
ated in this scenario. In all observed scenarios (Grid and
LuST), PREDATOR manages to stay superior in 10.54%,
25.87%, 27.68%, and 34.65% more tasks than the NEME-
SIS, CENTROID, SPATIAL, and DEGREE, respectively.
Also, PREDATOR is 89.13% and 86.87% closer to the
optimal approach in the Grid and LuST scenarios, respec-
tively.

5. Conclusion

The Vehicular Edge Computing (VEC) paradigm emerged
and enabled vehicles to actively act in the consumption

13

Cen
tro
id
De
gre
e
Spa
tial

NE
ME
SIS

PRE
DA
TO
R
Op
tim
al

0

1000

2000

3000

4000

5000

6000

7000
Se
nt
 P
ac

ke
ts
 (#

)

(a) Grid: Sent packets

Cen
tro

id
De

gre
e

Spa
tial

NE
MESI

S

PRE
DA

TO
R
Op

tim
al

0

500

1000

1500

2000

Pa
ck

et
 c
ol
lis

io
n
(#

)

(b) Grid: Packet collision

Cen
tro
id
De
gre
e
Spa
tial

NE
ME
SIS

PRE
DA
TO
R
Op
tim
al

0

10000

20000

30000

40000

50000

60000

70000

Se
nt
 P
ac

ke
ts
 (#

)

(c) LuST: Sent packets

Centro
id

Degree
Spatial

NEMESIS

PREDATOR
Optim

al0
1000
2000
3000
4000
5000
6000
7000
8000

Pa
ck

et
 c

ol
lis

io
n

(#
)

(d) LuST: Packet collision

Figure 7: Networks metrics considering different mobility traces.

10 15 20 25 30
Number of Tasks(#)

0

20

40

60

80

100

Sc
he
du

lin
g
su

cc
es
s (

%
)

Centroid
Degree

Spatial
NEMESIS

PREDATOR
Optimal

(a) Task scheduling in the Grid scenario

10 15 20 25 30
Number of Tasks(#)

0

20

40

60

80

100

Sc
he
du

lin
g
su

cc
es
s (

%
)

Centroid
Degree

Spatial
NEMESIS

PREDATOR
Optimal

(b) Task scheduling in the LuST scenario

Figure 8: Task scheduling results considering computational tasks with different requirements.

and supply of computational power to the Vehicular Ad-
Hoc Network (VANET). However, due to the dynamic na-
ture of vehicular mobility, proposing mechanisms that ef-
ficiently aggregate vehicular resources is not a trivial task.
This aggregation of vehicle resources is referred to as Ve-
hicular Cloud (VCloud) formation. In this context, we in-
troduced a mobility-aware VCloud formation mechanism
called PREDATOR, which selects the most stable nodes

in the network to perform cloud leadership activities. By
leveraging this mechanism, VEC applications can be allo-
cated to VClouds with the assurance that their processes
will be successfully completed within the required time
frame.

As demonstrated in the experiments, vehicular mo-
bility directly impacts the efficiency of VCloud formation
approaches that do not consider it in their decision-making

14

process. For instance, approaches relying solely on spatial
information exhibit the poorest performance in all anal-
yses. In other words, selecting a vehicle to lead a VC
without considering its current or future mobility does
not ensure the necessary stability for applications utiliz-
ing the computational power of VClouds, with no esti-
mate of the resource availability duration. On the other
hand, PREDATOR outperformed all evaluations precisely
because it considers future mobility when deciding VCloud
leadership, thereby enabling a future estimation of the du-
ration of these VClouds. The results demonstrate that
PREDATOR can increase the average lifetime of VClouds,
reduce the number of leader changes within these clouds,
and minimize network message exchanges compared to
other approaches in the literature, resulting in fewer packet
collisions. Furthermore, PREDATOR provides enhanced
stability to VEC applications with stringent deadline con-
straints.

In future work, we intend to explore additional tech-
niques for mobility prediction and incorporate other met-
rics to evaluate task scheduling. Additionally, we aim to
conduct an exploratory assessment of factors such as route
information, which could improve dwell time estimates
within VClouds. We also plan to investigate changes in
the weights assigned to the relative distance between the
vehicle and Roadside Unit (RSU) α and dwell time β to
further enhance the system’s performance.

Declaration of Competing Interest

The authors declare that they have no known compet-
ing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Acknowledgments

This work is supported by the grants #2018/16703-
4 and #2021/13780-0 of the São Paulo Research Foun-
dation (FAPESP). Wellington Lobato would like to ac-
knowledge the financial support granted by FAPESP, pro-
cess #2019/19105-3, in his research. Eduardo Cerqueira
would like to acknowledge the financial support granted
by CNPq.

Data availability

Data will be made available on request.

References

[1] S. Feng, X. Yan, H. Sun, Y. Feng, H. X. Liu, Intelligent driving
intelligence test for autonomous vehicles with naturalistic and
adversarial environment, Nature Communications 12 (1) (Feb.
2021). doi:10.1038/s41467-021-21007-8.

[2] L. Le Mero, D. Yi, M. Dianati, A. Mouzakitis, A Survey on Im-
itation Learning Techniques for End-to-End Autonomous Vehi-
cles, IEEE Transactions on Intelligent Transportation Systems
(2022). doi:10.1109/TITS.2022.3144867.

[3] T. Yoshizawa, D. Singelée, J. T. Mühlberg, S. Delbruel,
A. Taherkordi, D. Hughes, B. Preneel, A survey of security and
privacy issues in v2x communication systems, ACM Computing
Surveys (CSUR) (Aug 2022). doi:10.1145/3558052.

[4] R. Meneguette, R. De Grande, J. Ueyama, G. P. R. Filho,
E. Madeira, Vehicular Edge Computing: Architecture, Resource
Management, Security, and Challenges, ACM Computing Sur-
veys (CSUR) 55 (1) (Jan. 2023). doi:10.1145/3485129.

[5] G. S. Pannu, S. Dunkel, S. Ucar, T. Higuchi, O. Altintas,
F. Dressler, Improving Data Consistency in Vehicular Micro
Clouds, in: 2022 IEEE 19th Annual Consumer Communications
& Networking Conference (CCNC), IEEE, 2022, pp. 489–490.
doi:10.1109/CCNC49033.2022.9700653.

[6] J. B. D. da Costa, R. I. Meneguette, D. Rosário, L. A. Vil-
las, Combinatorial Optimization-based Task Allocation Mech-
anism for Vehicular Clouds, in: IEEE 91st Vehicular Tech-
nology Conference (VTC Spring), IEEE, 2020, pp. 1–5.
doi:10.1109/VTC2020-Spring48590.2020.9128834.

[7] G. S. Pannu, S. Ucar, T. Higuchi, O. Altintas, F. Dressler,
Vehicular Virtual Edge Computing using Heterogeneous
V2V and V2C Communication, in: IEEE INFOCOM
2022 - IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), IEEE, 2022, pp. 1–2.
doi:10.1109/infocomwkshps54753.2022.9798362.

[8] H. Choi, Y. Nam, Y. Shin, E. Lee, The partial cloud mem-
ber replacement for reconstructing vehicular clouds in VANETs:
Reactive and proactive schemes, Ad Hoc Networks 136 (2022)
102959. doi:10.1016/j.adhoc.2022.102959.

[9] F. Hagenauer, T. Higuchi, O. Altintas, F. Dressler, Efficient
data handling in vehicular micro clouds, Ad Hoc Networks 91
(2019) 101871. doi:10.1016/j.adhoc.2019.101871.

[10] A. Boukerche, N. Aljeri, Design Guidelines for Topology Man-
agement in Software-Defined Vehicular Networks, IEEE Net-
work 35 (2) (2021) 120–126. doi:10.1109/MNET.011.2000369.

[11] M. S. Bute, P. Fan, G. Liu, F. Abbas, Z. Ding, A
cluster-based cooperative computation offloading scheme for
C-V2X networks, Ad Hoc Networks 132 (2022) 102862.
doi:10.1016/j.adhoc.2022.102862.

[12] A. Boukerche, V. Soto, Computation Offloading and Retrieval
for Vehicular Edge Computing: Algorithms, Models, and Clas-
sification, ACM Computing Surveys (CSUR) 53 (4) (Jul. 2021).
doi:10.1145/3392064.

[13] G. S. Pannu, S. Ucar, T. Higuchi, O. Altintas, F. Dressler,
Dwell time estimation at intersections for improved vehicular
micro cloud operations, Ad Hoc Networks 122 (2021) 102606.
doi:10.1016/j.adhoc.2021.102606.

[14] X. Li, A. Garcia-Saavedra, X. Costa-Perez, C. J. Bernardos,
C. Guimarães, K. Antevski, J. Mangues-Bafalluy, J. Baranda,
E. Zeydan, D. Corujo, P. Iovanna, G. Landi, J. Alonso,
P. Paixao, H. Martins, M. Lorenzo, J. Ordonez-Lucena, D. R.
Lopez, 5Growth: An End-to-End Service Platform for Auto-
mated Deployment and Management of Vertical Services over
5G Networks, IEEE Communications Magazine 59 (3) (2021)
84–90. doi:10.1109/MCOM.001.2000730.

[15] J. B. D. da Costa, A. M. de Souza, D. Rosário, E. Cerqueira,
L. A. Villas, Efficient data dissemination protocol based on
complex networks’ metrics for urban vehicular networks, Jour-
nal of Internet Services and Applications 10 (1) (Aug. 2019).
doi:10.1186/s13174-019-0114-y.

[16] Z. Rejiba, X. Masip-Bruin, E. Marín-Tordera, A Survey on
Mobility-Induced Service Migration in the Fog, Edge, and Re-
lated Computing Paradigms, ACM Computing Surveys (CSUR)
52 (5) (Sep. 2020). doi:10.1145/3326540.

[17] W. Long, T. Li, Z. Xiao, D. Wang, R. Zhang, A. C. Re-
gan, H. Chen, Y. Zhu, Location Prediction for Individual Ve-
hicles via Exploiting Travel Regularity and Preference, IEEE
Transactions on Vehicular Technology 71 (5) (2022) 4718–4732.
doi:10.1109/TVT.2022.3151762.

[18] N. Magaia, P. Ferreira, P. R. Pereira, K. Muhammad,
J. Del Ser, V. H. C. de Albuquerque, Group’n Route: An
Edge Learning-Based Clustering and Efficient Routing Scheme

15

Leveraging Social Strength for the Internet of Vehicles, IEEE
Transactions on Intelligent Transportation Systems (2022).
doi:10.1109/TITS.2022.3171978.

[19] H. Zhao, J. Tang, B. Adebisi, T. Ohtsuki, G. Gui, H. Zhu,
An Adaptive Vehicle Clustering Algorithm Based on Power
Minimization in Vehicular Ad-Hoc Networks, IEEE Trans-
actions on Vehicular Technology 71 (3) (2022) 2939–2948.
doi:10.1109/TVT.2021.3140085.

[20] X. Wu, S. Zhao, R. Zhang, L. Yang, Mobility Prediction-
Based Joint Task Assignment and Resource Allocation in Ve-
hicular Fog Computing, in: IEEE Wireless Communications
and Networking Conference (WCNC), IEEE, 2020, pp. 1–6.
doi:10.1109/WCNC45663.2020.9120524.

[21] J. Liu, M. Ahmed, M. A. Mirza, W. U. Khan, D. Xu,
J. Li, A. Aziz, Z. Han, Rl/drl meets vehicular task of-
floading using edge and vehicular cloudlet: A survey,
IEEE Internet of Things Journal 9 (11) (2022) 8315–8338.
doi:10.1109/JIOT.2022.3155667.

[22] J. B. D. da Costa, W. V. Lobato J., A. M. de Souza,
E. Cerqueira, D. Rosário, L. A. Villas, NEMESIS: Mecanismo
para Formação de Nuvens Veiculares Baseado em Previsão de
Mobilidade, in: XL Brazilian Symposium on Computer Net-
works and Distributed Systems (SBRC), Sociedade Brasileira de
Computação, 2022, pp. 280–293. doi:10.5753/sbrc.2022.222309.

[23] L. Codecá, R. Frank, S. Faye, T. Engel, Luxembourg SUMO
Traffic (LuST) Scenario: Traffic Demand Evaluation, IEEE In-
telligent Transportation Systems Magazine 9 (2) (2017) 52–63.
doi:10.1109/MITS.2017.2666585.

[24] C. Cooper, D. Franklin, M. Ros, F. Safaei, M. Abolhasan, A
Comparative Survey of VANET Clustering Techniques, IEEE
Communications Surveys & Tutorials 19 (1) (2017) 657–681.
doi:10.1109/COMST.2016.2611524.

[25] M. Ayyub, A. Oracevic, R. Hussain, A. A. Khan, Z. Zhang,
A comprehensive survey on clustering in vehicular networks:
Current solutions and future challenges, Ad Hoc Networks 124
(2022) 102729. doi:10.1016/j.adhoc.2021.102729.

[26] P. Zhao, L. Feng, P. Yu, W. Li, X. Qiu, A Social-
Aware Resource Allocation for 5G Device-to-Device Multi-
cast Communication, IEEE Access 5 (2017) 15717–15730.
doi:10.1109/ACCESS.2017.2731805.

[27] S. Kamakshi, V. S. S. Sriram, Modularity based mobility
aware community detection algorithm for broadcast storm mit-
igation in VANETs, Ad Hoc Networks 104 (2020) 102161.
doi:10.1016/j.adhoc.2020.102161.

[28] M. L. M. Peixoto, A. H. Maia, E. Mota, E. Rangel, D. G. Costa,
D. Turgut, L. A. Villas, A traffic data clustering framework
based on fog computing for VANETs, Vehicular Communica-
tions 31 (2021) 100370. doi:10.1016/j.vehcom.2021.100370.

[29] F. Abbasi, M. Zarei, A. M. Rahmani, FWDP: A fuzzy logic-
based vehicle weighting model for data prioritization in ve-
hicular ad hoc networks, Vehicular Communications 33 (2022)
100413. doi:10.1016/j.vehcom.2021.100413.

[30] W. Wang, F. Xia, H. Nie, Z. Chen, Z. Gong, X. Kong, W. Wei,
Vehicle Trajectory Clustering Based on Dynamic Representa-
tion Learning of Internet of Vehicles, IEEE Transactions on
Intelligent Transportation Systems 22 (6) (2021) 3567–3576.
doi:10.1109/TITS.2020.2995856.

[31] A. Costa, L. Pacheco, D. Rosário, L. Villas, A. A. F.
Loureiro, S. Sargento, E. Cerqueira, Skipping-based
Handover Algorithm for Video Distribution Over Ultra-
Dense VANET, Computer Networks 176 (2020) 107252.
doi:10.1016/j.comnet.2020.107252.

[32] F. Tang, B. Mao, N. Kato, G. Gui, Comprehensive survey on
machine learning in vehicular network: Technology, applications
and challenges, IEEE Communications Surveys & Tutorials
23 (3) (2021) 2027–2057. doi:10.1109/COMST.2021.3089688.

[33] L. N. Balico, A. A. F. Loureiro, E. F. Nakamura, R. S.
Barreto, R. W. Pazzi, H. A. B. F. Oliveira, Localiza-
tion Prediction in Vehicular Ad Hoc Networks, IEEE Com-
munications Surveys & Tutorials 20 (4) (2018) 2784–2803.
doi:10.1109/COMST.2018.2841901.

[34] G. Sun, L. Song, H. Yu, V. Chang, X. Du, M. Guizani, V2V
Routing in a VANET Based on the Autoregressive Integrated
Moving Average Model, IEEE Transactions on Vehicular Tech-
nology 68 (1) (2019) 908–922. doi:10.1109/TVT.2018.2884525.

[35] A. Gupta, H. P. Gupta, B. Biswas, T. Dutta, A fault-tolerant
early classification approach for human activities using multi-
variate time series, IEEE Transactions on Mobile Computing
20 (5) (2020) 1747–1760. doi:10.1109/TMC.2020.2973616.

[36] C. Sommer, R. German, F. Dressler, Bidirectionally Coupled
Network and Road Traffic Simulation for Improved IVC Anal-
ysis, IEEE Transactions on Mobile Computing (TMC) 10 (1)
(2011) 3–15. doi:10.1109/TMC.2010.133.

[37] O. Alzamzami, I. Mahgoub, Link utility aware geo-
graphic routing for urban vanets using two-hop neigh-
bor information, Ad Hoc Networks 106 (2020) 102213.
doi:https://doi.org/10.1016/j.adhoc.2020.102213.

[38] S. Krauß, P. Wagner, C. Gawron, Metastable states in a mi-
croscopic model of traffic flow, Physical Review E 55 (5) (1997)
5597.

[39] Y. A. Debalki, J. Hou, H. Ullah, B. Y. Adane, Multi-hop data
dissemination using a multi-metric contention-based broadcast
suppression strategy in vanets, Ad Hoc Networks 140 (2023)
103070. doi:https://doi.org/10.1016/j.adhoc.2022.103070.

[40] E. Ndiaye, T. Le, O. Fercoq, J. Salmon, I. Takeuchi, Safe grid
search with optimal complexity, in: Proceedings of the 36th
International Conference on Machine Learning, PMLR, 2019,
pp. 4771–4780.

[41] N. Dasanayaka, Y. Feng, Analysis of vehicle location prediction
errors for safety applications in cooperative-intelligent trans-
portation systems, IEEE Transactions on Intelligent Trans-
portation Systems 23 (9) (2022) 15512–15521.

[42] Y. Liu, L. Huo, J. Wu, A. K. Bashir, Swarm learning-based dy-
namic optimal management for traffic congestion in 6g-driven
intelligent transportation system, IEEE Transactions on Intel-
ligent Transportation Systems (2023).

16

