
Combinatorial Optimization-based Task Allocation
Mechanism for Vehicular Clouds

Joahannes B. D. da Costa∗, Rodolfo I. Meneguette†, Denis Rosário‡, Leandro A. Villas∗
∗Institute of Computing (IC), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil

†University of São Paulo (USP), São Carlos, São Paulo, Brazil
‡Federal University of Pará (UFPA), Belém, Pará, Brazil

Email: joahannes@lrc.ic.unicamp.br, meneguette@icmc.usp.br, denis@ufpa.br, leandro@ic.unicamp.br

Abstract—The automotive industry has been continuously
investing in the modernization of the vehicles by the addition
of more sensors and computational power. With this evolution,
Intelligent Transportation Systems (ITS) make up a services
framework that seeks to mitigate problems in the road sector.
Many ITS services are facilitated by creating vehicular clouds
(VCs) by using the communication capabilities of other vehicles to
provide cloud services closer to vehicular applications. However,
often the computational resources present in the vehicles are
underutilized. For this reason, we propose in this work a
mechanism that efficiently allocates computational tasks to be
performed in VCs. Simulation results on a realistic mobility trace
show that, with our mechanism, tasks are more allocated, the
reward from allocating these tasks was higher, resource waste
was minimized, and less CPU is used in the allocation processing.
Also, the proposed mechanism is statistically close to a globally
optimal solution.

Index Terms—Vehicular cloud, Task allocation, ITS, VANETs

I. INTRODUCTION

In recent years, the number of vehicles has grown signif-
icantly in the worldwide, contributing to the emergence of
new research directions as the industry invests in incorporating
more technological resources into vehicles [1]. In this way,
vehicles could collect, transmit, and interpret information to
help in data acquisition and decision making with the intent
to help driver and devices to take action [2]. Vehicles play
a significant role in Intelligent Transportation Systems (ITS).
However, delay-intolerant requirements, such as safety appli-
cations require low latency, and also vehicular applications
must improve the usage of network/computing resources.

In this context, Vehicular Cloud (VC) emerged as a promis-
ing area to provide cloud services closer to vehicular users to
meet their needs regardless of vehicle location, improving road
safety and ensuring intelligent urban traffic systems [3]. VC
construction occurs by creating clusters with a set of vehicles
sharing the same preferences, such as direction, path similarity,
etc [4]. At any given moment, a vehicle could increase its
capabilities by using resources available from the VC, while
other vehicles lend their resources to the VC [5]. In this
way, VC aggregates vehicle resources, such as communication,
processing, and storage, from parked or moving vehicles to
create a VC in a distributed fashion [6]. Hence, VC resources
create a pool of services available to other vehicles [7], where
a VC Controller deployed at the network edge to manage the
task allocation and availability of resources.

The high vehicle mobility in both highway and urban
environments makes the resource allocation in the VC envi-
ronment an open issue, especially for processing tasks with
delay-intolerant requirements [8]. Also, allocate tasks with
high computational power requirements, such as traffic image
processing and other multimedia applications, are challenging
issues [9]. That is, VC’s resources vary depending on the
vehicular density variation. Thus, ensuring that the tasks are
allocated and served in the VC regardless of their charac-
teristics and requirements, is the main objective of studies
in VC. In addition, it is important to consider an efficient
task allocation mechanism to use VC resources efficiently,
reducing the waste of computational resources, while provides
computational power closer to vehicular applications.

In this paper, we propose a CombinatoRial optimization-
bAsed Task allOcation mechaniSm for VC, called CRATOS.
It runs on VC Controller deployed at the network edge,
such as a network controller, to coordinate multiple VCs. A
vehicle requests resources to VC Controller, which is aware
of resources available at each VC and task demands. In this
way, CRATOS selects the optimum set of tasks to be allocated
in real-time in each available VC based on combinatorial
optimization as quickly as possible, and using the maximum
computational resources as it can. CRATOS gives priority
to allocate tasks in VCs with more available resources to
maximize the fulfillment of demands in as few rounds as
possible. Besides, we have implemented an Integer Linear
Programming (ILP) formulation to show how close CRATOS
is to the optimal global solution. The simulation results consid-
ering a realistic mobility trace shows the benefits of CRATOS
mechanism, which offers 6.4% more tasks allocated, 46.69%
higher allocation reward, 17.47% less wasted resources, and
30.67% less CPU utilization.

The rest of this paper is structured as follows. Section
II discusses the related works on task allocation for VC.
Section III introduces the system model, problem definition,
and CRATOS operation. Section IV discusses the performance
evaluation and results obtained. Finally, Section V presents the
conclusions and future works.

II. RELATED WORK

Pereira et al. [10] proposed a policy for allocation based on
the method analytic hierarchy process to maximize resource
availability in VCs for highway environments. Specifically,

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE 91st Vehicular Technology Conference (VTC-Spring 2020)

vehicles cooperate with the set of Fogs along the highway to
create a pool of resources that will be made available to vehic-
ular services. The use of the fog computing paradigm allows
resources to be close to vehicles, allowing fog’s resources to
be added to the resources provided by vehicles, thus increasing
the number of services that can be offered. However, this work
does not consider only the vehicle resources for allocating
services, in addition to considering a highway scenario that
has more predictable mobility than an urban scenario.

Nabi et al. [11] presented a task allocation scheme for VCs
that uses Knapsack Problem concepts. This scheme solves the
allocation for a single task in polynomial time and provides
a greedy solution for the same purpose. Besides, they extend
the algorithm to solve the allocation problem for n tasks with
lower bounds and Fractional Knapsack Problem. However,
this scheme consider an offline environment in which the
problem instance is entirely available and is known before
the beginning of the simulation. In this sense, it requires
prior knowledge of the tasks to be allocated, not operating
satisfactorily in a real-time decision-making environment.

Wang et al. [12] proposed a task offloading algorithm for
VCs, which builds on the concepts of the Multi-dimensional
Multiple Knapsack Problem (MMKP). It considers that each
user will pay for computing tasks according to their size,
to maximize the total profits from computing offload from
an infrastructure perspective. A modified Branch-and-Bound
algorithm is proposed to obtain the ideal solution with a
Greedy heuristic method to get approximate performance with
lower computational overhead. However, these algorithms are
computationally costly because they compute the optimal
solution for each knapsack in one step and only then use this
information to allocate tasks in different clouds.

Hattab et al. [13] introduced a polynomial time complexity
algorithm for task allocation in VCs with different compu-
tational resources. First, the algorithm classifies the tasks
according to the ratio between completion time and wait
time. Afterwards, it selects a subset of tasks with the lowest
proportion and then solves a sequence of Linear Programs.
They formulate the bottleneck assignment problem, where the
goal is to minimize the completion time of the allocated tasks
in the available VCs. However, this work does not consider the
mobility of vehicles for VC formation, i.e., VCs are stationary,
and the proposed algorithm considers only one VC.

Based on our analysis of the state-of-the-art, we conclude
that existing works do not consider that tasks arrive in the
system dynamically and independently to allocate the tasks in
real-time. Besides, it is essential to consider VCs managed by
a controller deployed closer to the user, such as in a RSU.

III. CRATOS

This section describes the task allocation mechanism, where
we consider a scenario composed of multiple VCs coordinated
by a VC Controller, which runs CRATOS for task allocation.
CRATOS considers a combinatorial optimization approach for
selecting the optimum set of tasks to be allocated in real-time
in the available VCs.

A. Overview

Figure 1 shows a task allocation scenario in a VC environ-
ment. We consider a scenario composed of x moving vehicles
ui ∈ U , and each vehicle has an individual identity (i ∈
[1, x]). These vehicles can be represented in a dynamic graph
G(V,E), where the vertices U = u1, . . . , ux represent a finite
set of vehicles, and edges E = e1, . . . , ex build a finite set
of asymmetric wireless links between them. Each vehicle can
communicate with the neighbor vehicle (V2V) and/or with
infrastructure (V2I).

At any moment, a given vehicle ui needs to process some
data, but its computational resources do not support to process
such a task. In this sense, it sends a request message to VC
Controller to find neighbor vehicles N(ui) ⊂ U that could
lend it their resources to perform its task [7]. A group of
vehicles sharing the same preferences, such as direction and
path similarity, create a VC with computing, sensing, and
physical resources to be coordinated by the VC Controller
[3]. VC formation does not depend on a specific technique
for clustering since the only requirement is that VCs must be
identified and provided. In this way, we consider a well-known
clustering technique, named Density-Based Spatial Clustering
of Application with Noise (DBSCAN) [14].

Vehicle Task

VC
Controller

Request AllocationRSU VC

Link between RSU and VC Controller

Fig. 1. VC environment.

We denote each VC as vj ∈ V = {v1, . . . , vm}, which
consists of a subset of vehicles V ⊂ U capable of shar-
ing up to 3 of their computational resources ωi, such as
i) bandwidth, ii) processing and/or iii) storage. The VC
controller is deployed at the network edge, such as network
controller, connected to different Road Side Unit (RSU) in
order to coordinate multiple VCs. As soon as given a vehicle
ui requests resources to allocate its task, the VC Controller
must be aware of who has sufficient resources to allocate this
task. In this sense, the VC Controller must collect vehicle
information in real-time, such as available resources, speed,
direction, and GPS coordinates using V2I communication to
maintain knowledge about the vehicular environment. Hence,
VC Controller considers CRATOS to allocate the task (blue
arrow) to any available VCs, which can perform the task from
the vehicle ui that requested resource (red arrow). CRATOS
must perform task allocation as quickly as possible and using

maximum computational resources as it can, since the waste
of resources must be minimized. It is important to mention
that more than one task should be allocated to the same VCs
if this is possible.

B. Problem Definition

We describe each task tk ∈ T = {t1, . . . , tn}, and can
be represented as a 3-uple {idk, wk, gk}, where idk means
the task identification (k ∈ [1, n]), wk represents the amount
of resources to be allocated, and gk denotes the allocation
reward. In this way, the allocation mechanism aims to optimum
allocate such tasks to be processed in a VC without wast
resources and allocating more task as possible.

The Vehicular Cloud Task Allocation Problem (VCTAP)
can be modeled as a 0/1 Knapsack Problem (KP) because
of its similar characteristics. In KP, there are a items with
weight b and value-added c, and a Z capacity knapsack.
The KP aims to maximize the value of items stored in the
knapsack by not exceeding its capacity while considering that
an item can only be stored once (0 for unallocated and 1 for
allocated). KP is a combinatorial optimization problem and
has no known resolution in polynomial time. Thus, KP is a
NP-hard problem with O(aZ) complexity, where a being the
number of items and Z the capacity of the knapsack [15].

In this context, we define each task tk as a knapsack item,
and each VC vj as the knapsack. The total amount of resource
Ωj of each VC vj is the sum of the shared resources ωi from
each vehicle ui belonging to a given VC vj , as shown Eq. 1.

Ωj =

u∑

i=2

ωi,∀ui ∈ vj (1)

The reward gk for allocating a task increases uniformly at
twice its weight wk. In this way, we give higher rewards to
tasks with high weight, i.e., tasks that require higher computa-
tional power to be solved. CRATOS considers a combinatorial
optimization problem to maximize the reward for allocating
tasks, while the waste of vehicular computational resources is
minimized. The VCTAP is formally defined as:

maximize
n∑

k=1

gktk

subject to
n∑

k=1

wktk ≤ Ωj , and tk ∈ {0, 1}
(2)

C. Proposal for Efficient Task Allocation

VCTAP resolution requires minimal computational power
use in a sufficiently short time to meet the critical require-
ments of sure ITS applications. As discussed, the problem
of allocating tasks in VCs is NP-hard [9]. We can use
a dynamic programming approach to solve the VCTAP in
pseudo-polynomial time with O(nΩ) complexity, where n is
the number of tasks and Ω the capacity of a given VC vj .
However, we consider that tasks should be efficiently allocated
to more than one VCs if any, and adding more VCs to the
problem increases the complexity of the problem.

Dynamic programming considering multiple knapsacks,
known as 0/1 Multiple Knapsack Problem (MKP), is imprac-
tical because increasing its complexity. On the other hand,
other solutions seek to list all possible possibilities and cut
the decision tree based on relaxations, i.e., defining upper and
lower bounds. In this context, CRATOS considers a dynamic
programming algorithm to solve traditional KP but considering
multiple VCs, where its complexity becomes O(max{m}nΩ)
in the worst case, with m being number of VCs.

Algorithm 1 describes the main operations for CRATOS
allocate tasks in a VC environment. In this sense, the VC
controller must provide to CRATOS the set of VC V and set
of task T , which gives as an output the optimal task allocation
S for each VC vj . First, as long as unallocated tasks exist,
the system will operate (Line 5). As soon as there are no
available resources at the set of VC V , the system will stop
as there are no more available resources to allocate (Line 15).
Otherwise, CRATOS takes a given VC vj with more available
resources from the set of VC V . In addition, CRATOS call the
procedure KNAPSACKPROBLEM (i.e., traditional KP) giving
the set of task T and the selected VC vj , which returns tasks
that were allocated in the selected VC vj (Lines 7-9). As tasks
are allocated, they are removed from the set of task T and
added to the allocated task set S. Tasks that remain in the set
of task T will be reallocated in the next round (Lines 10-11).
The algorithm stops if all tasks have been allocated in this
round (Line 13).

Algorithm 1: CRATOS
Input: task set T and VC set V
Output: allocated tasks S

1 begin
2 T ← {1, . . . , n}
3 V ← {1, . . . ,m}
4 t← 〈tidk , twk , tgk 〉 ∀t ∈ T
5 while T 6= ∅ do
6 if V 6= ∅ then
7 v ← max{V }
8 V ← V \ {v}
9 S′ ← KNAPSACKPROBLEM({T, v})

10 T ← T \ S′
11 S.pushback(S′)
12 if |T | = 0 then
13 break . all tasks were allocated

14 else
15 break . without resources

16 return S

IV. EVALUATION

This section describes methodology and metrics used to
evaluate CRATOS performance in terms of allocation reward,
tasks allocated (called of services served), resource utilization,
and CPU time compared to greedy and an ILP formulation.

A. Scenario description and Methodology

We implemented the task allocation in the Simulation of
Urban MObility (SUMO) 0.29.0. The algorithms (CRATOS
and GREEDY) were implemented in Python and connected to

SUMO through the TraCI1 interface. We considered a real
mobility trace from Luxembourg SUMO Traffic (LuST) [16],
which provides 24 hours of mobility simulation with 5.000
vehicles at its peak times for the city of Luxembourg using
the traffic simulator SUMO. Results present values with a
confidence interval of 95%.

For this work, we consider only a period with a lower
vehicular density from LuST, i.e., from 3pm to 4pm, as
indicated in Figure 2(a). In this way, we demonstrate that
the CRATOS mechanism operates satisfactorily with fewer
available resources. We consider each vehicle’s communica-
tion range of 100m, and a minimum number of members per
VC has been set to 2. Based on such values, Figure 2(b)
shows the number of VCs identified in the trace, which follows
the vehicular density of the scenario, but they are inversely
proportional. According to vehicular density increases, the
higher the chance of vehicles joining the clusters, i.e., VCs.

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0

1000

2000

3000

4000

5000

6000
Vehicles

(a) Number of vehicles

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0
20
40
60
80

100
120
140
160 VCs

(b) Number of VCs identified

Fig. 2. Data extracted from the LuST scenario.

The deadline (system runtime) for each task is equaled to
1, i.e., once the task is allocated, its success in the allocation
is already accounted. The clustering interval was 60 seconds.
Tasks are generated after the cluster formation, and a task
allocation mechanism allocates them based on its behavior.
The tasks arrival rate follows a Poisson distribution with an
average of λ = 25, as their occurrences are independent of
each other [17]. In addition, the weight w of each task is
defined as a uniform distribution ranging from [1, µ], where
µ = {300} and the allocation reward g is defined between
[2, (w × 2)], as discussed in Subsection III-B. We consider
that vehicles make available resources ranging between 1 and
3, and average tasks weight equals to 300. In this way, we can
get an idea of the impact that sharing different resource units
employ on the system as a whole.

We considered three allocation mechanism to analyze their
performance to allocate tasks in a VC environment, namely
CRATOS, GREEDY, and ILP. GREEDY implementation is
based on Nabi et al. [11], which is a greedy strategy that orders
tasks in non-increasing weight, and allocates tasks based on
that classification considering all available VCs. CRATOS con-
siders a combinatorial optimization-based task allocation, as
introduced in Section III. We also implemented a formulation
of ILP to solver the 0/1 Multiple Knapsack Problem (MKP)

1http://sumo.dlr.de/docs/TraCI.html

[15]. This ILP provides the global optimum solution for the n
tasks and m VCs, enabling to assess how close CRATOS and
GREEDY are to the optimal global solution. We implemented
ILP on solver Gurobi2, 9.0 version. The formalization of ILP
is similar to the formulation of traditional KP (Eq. 2) and can
be defined based on Eq. 3. However, the assignment of items
considers all knapsacks available in the same round.

maximize
m∑

i=1

n∑

k=1

gktk

subject to
n∑

k=1

wktk ≤ Ωm, and tk ∈ {0, 1}
(3)

We consider the following metrics to evaluate the perfor-
mance of task allocation mechanisms: i) allocation reward
means how much reward was obtained for allocating tasks;
ii) services served refers to the ratio of successfully allocated
tasks; iii) resource utilization denotes how much VC resources
were used; and iv) CPU time is the time spent by the allocation
mechanism to select on which VC to allocate tasks.

B. Results

Figure 3(a) shows reward per task allocation for the eval-
uated mechanisms. We can see that CRATOS has greater
allocation reward compared to GREEDY approach. This is
because CRATOS considers all available VCs and selects the
one with the highest capacity to allocate more tasks per round
and, consequently, it increases the average reward. GREEDY
performs poorly, even when making the greedy choice based
on the value of tasks, since it ends as soon as the task value
from the current task is greater than the next task. On the
other hand, CRATOS checks the weight and task value at
the same time, and thus it finds an optimal solution for one
VC at a time. However, as we can see, the ILP manages to
obtain a better reward for allocation, since it combines all
the possibilities given the n tasks and m VCs and always
consider the best among the solutions. In general, the CRATOS
employed improvement of 46.69% over GREEDY, and remains
very close to the ILP, about 96.17%, which is the global
optimum.

Figure 3(b) displays the rate of tasks that were success-
fully allocated for the mechanisms with different amounts
of resources. As we can see, CRATOS can allocate more
tasks in all scenarios compared to GREEDY. All the evaluated
mechanisms behave similarly for vehicles sharing 1 resource
unit. This is because as the number of resources is low to
allocate heavy tasks, selecting the largest VCs first ensures that
at least part of these tasks will be allocated without any criteria
besides observing the size of the VCs. However, as soon as
more resources are made available by vehicles in VCs, ILP
stands out for having more VCs options to observe during the
process of building the optimal solution. In VCs with greater
availability of resources, CRATOS allocates 80% of the tasks.

2http://www.gurobi.com

1 2 3
Resources (#)

0

500

1000

1500

2000

2500

3000

Re
wa

rd

ILP Greedy CRATOS

(a) Allocation reward

1 2 3
Resources (#)

0

20

40

60

80

100

Nu
m
be

r o
f s

er
vi
ce

s s
er
ve

d
(%

)

ILP Greedy CRATOS

(b) Services served

1 2 3
Resources (#)

0

20

40

60

80

100

Re
so

ur
ce

 u
til

iza
tio

n
(%

)

ILP Greedy CRATOS

(c) Resource utilization

1 2 3
Resources (#)

10−2

10−1

100

CP
U
tim

e
in
 se

co
nd

s

ILP Greedy CRATOS

(d) CPU time

Fig. 3. Simulation results for different number of resources.

CRATOS employed improvement of 6.4% over GREEDY, and
proved to be close to 95.82% of the ILP formulation.

Figure 3(c) presents the usage of available resources in
the VCs, which is essential to show that vehicular applica-
tions can better exploit previously underutilized resources.
As can be seen, CRATOS makes better use of available
resources compared to GREEDY, since it keeps operating while
tasks are being performed and while there are computable
resources in VCs that can be allocated optimally. GREEDY
is not concerned with using resources efficiently because it
is primarily concerned with the reward of the task. Thus,
CRATOS decreases wasted resources in 17.47% compared to
GREEDY, and remains close to the ILP, about 69.49%.

Figure 3(d) shows the average CPU usage, where a longer
CPU time potentially introduces latency to the system, conse-
quently degrading its overall performance. For this evaluation,
we counted the amount of time spent in each allocation step
using an Intel(R) Core(TM) i7-8565U CPU (8×1.80 GHz)
with Linux 64bits. ILP uses more processing resources to
compute the global optimal task allocation solution. Next,
CRATOS is 28.65% more computationally expensive than
GREEDY, but even so, it is 30.67% as cheap as ILP.

In general terms, CRATOS shows itself close to the ILP
in terms of allocated tasks and the reward obtained for these
allocations, making better use of computational resources con-
cerning GREEDY, spending less computational power required
by ILP because of its complexity.

V. CONCLUSION

In this paper, we proposed a task allocation mechanism
called CRATOS, which is based on combinatorial optimization
for efficient task allocation in VC environment to make the
most of the computational resources available and enable cloud
services closer to vehicular users. Simulation results show
that CRATOS fulfills its objectives to minimize the waste
of resources while allocating a considerable number of tasks
compared to the GREEDY approach, and it is close to the ILP.
The future works include spatiotemporal analysis to estimate
the duration of the VCs, thereby increasing the availability of
resources for task allocation with more challenging deadlines.
Also, the measurement of network metrics about the mainte-
nance of knowledge by the VC Controller.

REFERENCES

[1] Qualcomm. (2018) Connecting vehicles to everything. [Online].
Available: https://www.qualcomm.com/invention/5g/cellular-v2x

[2] F. Dressler, G. S. Pannu, F. Hagenauer, M. Gerla, T. Higuchi, and
O. Altintas, “Virtual edge computing using vehicular micro clouds,” in
2019 International Conference on Computing, Networking and Commu-
nications (ICNC). IEEE, 2019, pp. 537–541.

[3] A. Boukerche and E. Robson, “Vehicular cloud computing: Architec-
tures, applications, and mobility,” Computer Networks, 2018.

[4] F. Hagenauer, C. Sommer, T. Higuchi, O. Altintas, and F. Dressler,
“Vehicular micro cloud in action: On gateway selection and gateway
handovers,” Ad Hoc Networks, vol. 78, pp. 73–83, 2018.

[5] G. S. Pannu, F. Hagenauer, T. Higuchi, O. Altintas, and F. Dressler,
“Keeping data alive: Communication across vehicular micro clouds,”
in 2019 IEEE 20th International Symposium on" A World of Wireless,
Mobile and Multimedia Networks"(WoWMoM). IEEE, 2019, pp. 1–9.

[6] A. Thakur and R. Malekian, “Fog computing for detecting vehicular
congestion, an internet of vehicles based approach: A review,” Intelligent
Transportation Systems Magazine, vol. 11, no. 2, pp. 8–16, 2019.

[7] F. Hagenauer, T. Higuchi, O. Altintas, and F. Dressler, “Efficient data
handling in vehicular micro clouds,” Ad Hoc Networks, vol. 91, p.
101871, 2019.

[8] S. Raza, S. Wang, M. Ahmed, and M. R. Anwar, “A survey on vehicular
edge computing: Architecture, applications, technical issues, and future
directions,” Wireless Communications and Mobile Computing, 2019.

[9] I. Sorkhoh, D. Ebrahimi, R. Atallah, and C. Assi, “Workload scheduling
in vehicular networks with edge cloud capabilities,” IEEE Transactions
on Vehicular Technology, 2019.

[10] R. Pereira, D. Lieira, M. da Silva, A. Pimenta, J. B. D. da Costa, D. L.
Rosario, and R. I. Meneguette, “A novel fog-based resource allocation
policy for vehicular clouds in the highway environment,” in Proceed-
ingsof the IEEE 11th Latin-American Conference on Communications
(LATINCOM). IEEE, 2019, pp. 1–6.

[11] M. Nabi, R. Benkoczi, S. Abdelhamid, and H. S. Hassanein, “Resource
assignment in vehicular clouds,” in 2017 IEEE International Conference
on Communications (ICC). Ieee, 2017, pp. 1–6.

[12] J. Wang, T. Liu, K. Liu, B. Kim, J. Xie, and Z. Han, “Computa-
tion offloading over fog and cloud using multi-dimensional multiple
knapsack problem,” in 2018 IEEE Global Communications Conference
(GLOBECOM). IEEE, 2018, pp. 1–7.

[13] G. Hattab, S. Ucar, T. Higuchi, O. Altintas, F. Dressler, and D. Cabric,
“Optimized assignment of computational tasks in vehicular micro
clouds,” in Proceedings of the 2nd International Workshop on Edge
Systems, Analytics and Networking. ACM, 2019, pp. 1–6.

[14] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

[15] S. Martello and P. Toth, Knapsack problems: algorithms and computer
implementations. John Wiley & Sons Ltd., 1990.

[16] L. Codeca, R. Frank, and T. Engel, “Luxembourg sumo traffic (lust)
scenario: 24 hours of mobility for vehicular networking research,” in
IEEE Vehicular Networking Conference (VNC). IEEE, 2015, pp. 1–8.

[17] A. J. Kadhim and S. A. H. Seno, “Maximizing the utilization of fog
computing in internet of vehicle using sdn,” IEEE Communications
Letters, vol. 23, no. 1, pp. 140–143, 2019.

