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ABSTRACT
Federated Learning (FL) is a strategy for training distributed learn-

ingmodels. This approach gives rise to significant challenges includ-

ing the non-independent and identically distributed (non-IID.) char-

acteristics inherent to the training data, which can wield influence

over the comprehensive accuracy of the global model. Moreover,

the collaborative involvement of multiple clients in training proto-

cols frequently engenders increased communication overheads and

resource management overheads. In this research, we present an

innovative strategy to address the inherent challenges of federated

learning, including the communication overhead, data heterogene-

ity, and privacy preservation concerns. Our proposed approach

centers on the concept of adaptive client selection, comprising a

two-step process: firstly, the identification of a subset of clients

possessing pertinent and representative data for participation in

model training, and secondly, the determination of whether to

transmit the local updates from these selected clients to the cen-

tral aggregation server. Our methodology leverages the metrics of

data entropy and model divergence to guide this client selection

process. By applying this approach, we effectively mitigate commu-

nication overhead without compromising the accuracy achieved in

the federated learning process.
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1 INTRODUCTION
With the ever-growing proliferation of edge devices, a myriad of

opportunities emerge, and among them stands out Federated Learn-

ing (FL). In FL, multiple entities, referred to as clients, collaborate

to address a machine learning problem. Federated Learning was

first introduced by McMahan et al. [13], with its primary limitation

being the associated communication costs. In FL, clients operate un-

der the coordination of a central server or service provider, which

may not be present in other distributed learning setups. Unlike tra-

ditional approaches, in FL, each client’s data remain stored locally

and is not transferred to the central server [11, 14]. Instead, only

focused model updates, designed explicitly for immediate aggrega-

tion at the central server, are used to achieve the learning objective

collectively. Communication plays a vital role within the Federated

Learning ecosystem, as highlighted in previous studies [16], [17].

It is widely recognized that communication can emerge as a pri-

mary bottleneck in the context of FL, as emphasized in recent

research [6]. Moreover, heterogeneity is recognized as a factor that

can degrade the convergence of models [18]. In this sense, two

distinct types of heterogeneity exist, namely, state heterogeneity

and hardware heterogeneity, and both are related to the afore-

mentioned problems [3]. The heterogeneity of state, which is not

well-studied in the literature, is associated with factors such as CPU

state (busy/free and dynamic), network connection stability, and

other similar variables. These factors can introduce variations in

the performance and behavior of individual devices participating

in the FL. On the other hand, heterogeneity of hardware refers to

differences in hardware characteristics among devices, such as CPU

capabilities, RAM capacity, battery life, and other hardware-related

aspects. These variations can affect the computational resources

available for training and inference tasks, potentially impacting the

overall performance and efficiency of the FL system [18].

Considering these factors, efforts are being made to enhance

client selection by leveraging contextually derived information [9].

For instance, owing to the ever-changing attributes of present-day

devices, there exists a limitation in the effectiveness of training

quality. In conventional FL methods, a proactive approach to client

scheduling is commonly employed. This involves the server select-

ing participants based on client state and associated parameters.

Nevertheless, participants chosen through reactive methods are

prone to higher chances of failure during an FL round [5].

FL is a collaborative framework where numerous clients work

together to address machine learning problems, all overseen by a

central aggregator (server) [19]. In the research conducted by Guen-

douzi et al. [4], the FL process can be broken down into several

distinct phases. These phases encompass problem identification,

participant selection, training, parameter sharing, parameter aggre-

gation, and parameter broadcast. It is essential to emphasize that
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each phase introduces specific and distinctive challenges. Client

selection defines the set of clients that will train the model, and a

well-designed client selection scheme in Federated Learning can

substantially enhance model accuracy [8]. In this sense, the focuses

of this study are: (i) client selection and (ii) parameter sharing. In

this way, the communication overhead is a key challenge in FL [12].

Several research efforts have tackled this challenge using thresholds,

client reduction, and multi-criteria approaches [1, 17]. However,

it is worth noting that many of these methods require a compre-

hensive understanding of the data in order to select an appropriate

configuration. In special, client selection defines the set of clients

that will train the model, which is a crucial step in ensuring the

effectiveness of the process when statistically heterogeneous data

exist in the set of clients. The presence of non-IID data, character-

ized by variations in both data amount and category distribution,

often leads to significant degradation in accuracy for many deep

neural network models trained using distributed methods [10].

In this context, this work introduces EntropicFL, which uses a

client selection strategy based on two criteria, namely the entropy

of data and the accuracy of the clients. Given that entropy is directly

related to non-IID nature of the on-devices training data [15], using

the entropy criterion could be a promising approach to develop a

client selection strategy. EntropicFL addresses the issue of non-IID

data to ensure model convergence, reducing the total number of up-

dates transferred of selected clients. Consequently, communication

overhead and bottlenecks are reduced. In our experimental results,

EntropicFL has demonstrated achieving accuracy very close to the

methods in the literature, while reducing communication overhead

by at least 27.7%.

This paper is organized as follows. Section 2 provides an overview

of the relevant literature and theoretical foundations of the pro-

posed algorithm. In Section 3, basic concepts are described. Section

4 provides a comprehensive overview of the design of the proposal.

Section 5 describes the implementation and the configuration set-

tings of the experiments that were conducted, and finally, Section

6 presents the conclusions and future works.

2 RELATEDWORK
This Section describes a set of related work considering the client

selection problem in FL environments. Wang et al. [17] introduced
CMFL (Communication-Mitigated Federated Learning). CMFL em-

ploys sign-based metrics to determine whether to transmit local

updates to the server, contingent on a threshold. This threshold is

reliant on data distribution and necessitates an exploratory investi-

gation. CMFL also guarantees convergence. In contrast, EntropicFL

dynamically computes the threshold in each round using divergence

weights between local and global models, allowing each client to

determine whether to send updates to the server, consequently

reducing the communication overhead.

In Zhao et. al [21], weight divergence in non-IID data is exam-

ined, revealing higher divergence compared to IID data. They pro-

pose enhancing accuracy in non-IID data by establishing a shared,

small global dataset among clients. Our research leverages model

divergence to detect irrelevant client updates.

The FedMCCS framework, introduced by Abdulrahman et al.

in their 2021 work (Abdulrahman, 2021) [1], focuses primarily on

improving client selection and participation in federated learning,

particularly addressing issues related to client diversity and re-

source constraints. However, one significant aspect that has not

been addressed in this framework is the optimization of client model

update efficiency during the federated learning process. In our re-

search, we introduce an approach where we integrate a divergence

model to predict the influence of each client’s update on the global

model and decide if this contribution is relevant or irrelevant to

consider communicating to the server.

CSFedAvg in [20] utilizes weight divergence to measure the non-

iid degree and prefers participants with lower divergence. However,

it necessitates server-side model training and auxiliary data, offer-

ing no communication overhead reduction assurance. In our pro-

posal, clients determine server updates based on weight divergence

criteria, and reducing communication overhead is guaranteed.

In the work by Orlandi [15], they introduce FedAvgBE a frame-

work designed to mitigate the impact of non-IID by identifying

problematic data blocks within clients’ local datasets using mean

global entropy calculations. While FedAvgBE effectively reduces

communication costs, it falls short in addressing the issue of “com-

munication overhead”. This oversight could potentially necessitate

an increase in the number of training rounds or the addition of

more local epochs to improve the model’s accuracy.

In the state of the art, the reduction of “communication over-

head” is approached from multi-objective perspectives and through

data analysis to establish server update criteria. However, it is im-

portant to note that data analysis and the search for appropriate

thresholds may require additional experiments in some cases. This

article presents EntropicFL, an approach designed to leverage en-

tropy metrics for client selection, allowing us to gauge the data

uncertainty associated with each client’s dataset and select suitable

participants for federated learning. Moreover, our methodology

establishes criteria on the client side to determine whether an up-

date should be communicated, effectively reducing communication

overhead. This dual-pronged approach enhances the extraction of

valuable insights from client data while safeguarding data privacy

and optimizes the communication process.

3 BASIC CONCEPTS
In this section, we define the basic concepts, starting with a formal

definition of FL and the concept of Shannon entropy.

3.1 Federated Learning Model
FL models usually necessitate an initial training process, typically

encompassing the primary steps, as depicted in Figure 1. Consider,

furthermore, that for each trained model, whether at the local or

global level, there are associated weights. This arises from the fact

that they are machine learning models.

3.2 Shannon Entropy
Shannon entropy plays a crucial role in quantifying uncertainty

and characterizing the average information content of a data source,

as discussed in [15]. The Shannon entropy is computed as follows.

𝐻 (𝑋 ) = −
𝑛∑︁
𝑖=1

𝑃 (𝑥𝑖 ) log
2
𝑃 (𝑥𝑖 ) (1)
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Figure 1: Visual Representation of a Typical Federated Learn-
ing Training Process

where:

𝐻 (𝑋 ) represents the entropy of the random variable 𝑋 .

𝑃 (𝑥𝑖 ) is the probability of event 𝑥𝑖 .

Clients with high-entropy datasets have the potential to enhance

the federated learning model’s performance by providing diverse

and informative data.

Figure 1 depicts the standard aggregation process employed in

federated learning, wherein client cooperation and server commu-

nication are established via the Federated Learning Model. The

combination of data and models that make up the isolated system

ensures data privacy preservation, as communication is limited to

the distribution and uploading of model updates. In each isolated

system, each local model is characterized by its associated weights

𝑤 . When updates are received, the server uses an aggregation al-

gorithm to obtain a global model𝑊 distributed among the clients.

In this paper, “Shannon Entropy” is a criterion used for selecting

clients participating in model training. The fundamental premise

of our proposal lies in the synergy between entropy and the client

selection process.

4 ENTROPICFL
This Section presents the system model and outlines the design of

the metrics-based approach proposed in [3]. This approach forms

the fundamental framework upon which our research is built. To

facilitate a clear understanding of the key notations used through-

out this paper, Table 1 offers a succinct summary of these symbols

and terms.

4.1 Determining Update Relevance
One of the challenges in federated learning is determining the rel-

evance and impact of each client’s update on the global model.

Different metrics can be used to measure the similarity or diver-

gence between the local and global models and decide whether

to send the local updates to the server. In this work, we use the

following metrics:

• Normalized Model Divergence refers to a computational ap-

proach that quantifies the dissimilarity between local and

Table 1: Notations used in this paper.

Notation Meaning

𝑤 Model weights

𝑖 Index of model weights

𝑤𝑖 𝑗 ,𝑤 𝑗 𝑗−th weight in client 𝑖 and server, respectively

𝐾 Server Capacity

E Entropy of a client

A Accuracy of a client

𝑎𝑐 Accuracy of client 𝑐

𝑒𝑐 Entropy of client 𝑐

|𝑑 | Number of samples of client

𝑀𝐷 Mean of divergence

global models by employing a particular norm. It calculates

the mean value of a norm function applied to the weight

disparity between client 𝑖 and the global model. Specifically,

when utilizing the 𝐿1 norm, the equation is as follows:

𝑑𝑣𝑖 =
1

|𝑤 |

|𝑤 |∑︁
𝑗=1

|
𝑤𝑖 𝑗 −𝑤 𝑗
𝑤 𝑗

| (2)

A small distance implies a close alignment between the mod-

els, while a larger distance implies a significant discrepancy.

Our approach employs the Normalized Model Divergence metric

with a threshold computed based on the information clients share

with the central server. This threshold is determined as a weighted

average of the normalized model divergence from each client. This

approach enables us to evaluate the significance of a client’s update

before transmitting it to the central server. By implementing this

methodology, we can significantly reduce communication overhead

and enhance the overall efficiency of the federated learning process.

4.2 Suitability Score
Let C be a set of clients participating in a federated learning system.

For each client 𝑐 ∈ C, let 𝐴𝑐 denote the accuracy, and 𝐸𝑐 denote
the entropy of client 𝑐 . The suitability 𝐷𝑐 of client 𝑐 is defined

as the weighted sum of its accuracy and entropy, representing its

contribution to the global model, as shown in Equation 3.

𝐷𝑐 = 𝛾 · 𝐴𝑐 + (1 − 𝛾) · 𝐸𝑐 (3)

Where 𝛾 is a non-negative coefficient representing the relative

importance of each attribute. This metric effectively assesses a

client’s performance by considering two crucial factors: the ac-

curacy of its local model and entropy, indicating data diversity

and richness. It is a valuable tool to evaluate individual client data

quality and their contribution to the FL training process.

4.3 Details and Algorithms
EntropicFL encompasses activities that require execution on both

the client and server sides. In this section, we refer to “informa-

tion” on the client side as a set comprising entropy, accuracy, and

Normalized Model Divergence.

Figure 2 illustrates the process of our proposed architecture. In

the 1 , clients who have previously received the model from the
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Figure 2: Overview of EntropicFL: after clients send the model in step 1, only clients selected in step 2 receive the updated
model in step 3. They then proceed to train the received model in step 4. In step 5, clients train the updated model, compute
the entropy of their data, evaluate the Normalized Model Divergence, and, following the criteria explained in Algorithm 2,
transmit the updates.

Algorithm 1: Central Server
// Initialize the model

1 foreach round 𝑡 ∈ 𝑇 do
2 if round == 0 then
3 𝑤𝑡 ← RandomInitialization( )

4 𝑀𝐷𝑡 ←MeanDivergence(∞,∞)
5 foreach client 𝑛 ∈ 𝑁 do
6 𝑤𝑛

𝑡+1 ← LocalUpdate(𝑀𝐷𝑡 , 𝑤𝑡 , 𝑑𝑛 )

7 else
8 E,A,D, |𝑑 |, 𝑤𝑡 ← ReceiveClientInformation( )

9 𝑀𝐷𝑡+1 ←
∑|𝑁 |
𝑖=1
D𝑖×|𝑑𝑖 |∑|𝑁 |

𝑖=1
|𝑑𝑖 |

// Aggregates the gradients received

10 𝑤𝑡+1 ←
∑|𝑁 |

𝑖=1
𝑤𝑛
𝑡+1

// Client selection phase

11 ClientSelecion(E, 𝐾 )

12 ClientSelection (E, 𝐾 ):
13 𝐶 ← NormalizeEntropy(E)
14 L ← ∅
15 for 𝑎𝑐 , 𝑒𝑐 ∈ 𝐶 do
16 𝑐, 𝑤 ← 𝐷𝑐 (𝑎𝑐 , 𝑒𝑐 )
17 L ← L ∪ {𝑐, 𝑤}
18 S ← ∅
19 𝑖 = 0

20 while 𝑖 ≠ 𝐾 do
21 𝑐𝑡 ← ChooseByWeights(L)
22 S ← S ∪ {𝑐𝑡 }
23 delete 𝑐𝑡 from L
24 𝐾 ← 𝐾 + 1

25 return S

server train and communicate their updates and information to the

server. This process is detailed in Algorithm 1. Then, the server

receives client information accuracy, entropy, and a quantity of data

in 2 and calculates the Normalized Model Divergence. In 3 , the

server performs client selection, algorithm 1 line11, which takes the

Algorithm 2: Mobile Device

// Receives global model 𝑤𝑡 and mean global divergence 𝑀𝐷𝑡

1 LocalUpdate (𝑤𝑡 , 𝑀𝐷𝑡 ):
// Entropy calculation using Shannon

2 E ← CalcEntropy( )

// Compute divergence with global and client weights

3 D ← ComputeDivergence(𝑤𝑡 , 𝑤
𝑐
𝑡 )

// Accuracy

4 A ← 0

5 if client is selected then
6 𝑤𝑐

𝑡 ← 𝑤𝑡

7 𝑤𝑡+1 ← ExecuteLocalTrain( )

8 D ← ComputeDivergence(𝑤𝑡 , 𝑤
𝑐
𝑡+1)

9 if D ≤ 𝑀𝐷𝑡 OR client is priorized then
10 return E,A,D, |𝑑 |, 𝑤𝑡

11 return E,A,D, |𝑑 |, 𝑤𝑡

client’s information and the server’s capacity 𝐾 as input. This algo-

rithm normalizes entropy and uses the “ChooseByWeights” method

based on Equation 3 to perform a randomweighted selection, where

the weight is associated with 3 for each client. Subsequently, two

clients from the selected group are prioritized randomly. Finally, in

4 , clients execute Algorithm 2, and in step 5 , the clients calculate

the entropy of its data and assess the Normalized Model Divergence

between the weights communicated by the server and the local

weights obtained after training using Equation 2. Subsequently,

they transmit their updates (line 9).

5 EXPERIMENTAL RESULTS
In this section, we present empirical evaluations of EntropicFL,

along with comparative assessments against other federated learn-

ing methods.

5.1 Performance Metrics
To facilitate the comparison between the algorithms, the following

metrics were employed. Within the 𝑓 𝑡ℎ iteration, we utilize the



EntropicFL: Efficient Federated Learning via Data Entropy and Model Divergence UCC ’23, December 4–7, 2023, Taormina (Messina), Italy

0 10 20 30 40 50
Communication Round (#)

0.3

0.4

0.5

0.6

0.7

0.8
Te
st
 A
cc
ur
ac
y 
(%

)

EntropicFL
CMFL
FedAvg
FedAvgBE

(a) Accuracy for 𝛾 = 0
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(b) Accuracy for 𝛾 = 0.5

0 10 20 30 40 50
Communication Round (#)

0.3

0.4

0.5

0.6

0.7

0.8

Te
st
 A
cc
ur
ac
y 
(%

)

EntropicFL
CMFL
FedAvg
FedAvgBE

(c) Accuracy for 𝛾 = 1

Figure 3: Accuracy results with different 𝛾 values in Equation 3.
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(a) Communication overhead reduction for 𝛾 = 0
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(b) Communication overhead reduction for 𝛾 = 0.5
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(c) Communication overhead reduction for 𝛾 = 1

Figure 4: Communication overhead reduction results with different 𝛾 values compared to the FedAvg baseline.

notation 𝑆𝑡 to represent the ensemble of clients that transmit their

local updates to the central server. The nomenclature communica-
tion round in the 𝑡𝑡ℎ iteration is formally defined as 𝑟𝑡 = |𝑆𝑡 |. The
notion of accumulated communication rounds is established as the

cumulative tally of local updates performed by clients over a period

spanning 𝑇 iterations using an algorithm 𝐴:

Φ𝑎𝐴 =

𝑇∑︁
𝑡=1

𝑟𝑡 =

𝑇∑︁
𝑡=1

|𝑆𝑡 | (4)

As demonstrated in previous studies, as exemplified by [17], the pri-

mary aim is to devise a communication-efficient algorithm denoted

as 𝐴 with the goal of minimizing the accumulated communication

rounds, denoted as Φ𝑎
𝐴
, while ensuring a specific level of learning

accuracy denoted as 𝑎. We use the same notation and objective.

5.2 Experiments Setup
EntropicFL utilized Python version 3.10 and the Flower framework

[2]. The architecture employed is a Convolutional Neural Network

(CNN), specifically, the AlexNet architecture as described in [7].

We generated non-uniform data distribution to FL clients using

the CIFAR-10 dataset and compared EntropicFL with literature

approaches namely CMFL [17], FedAvg [13], and FedAvgBE [15]

This was accomplished by implementing a data distribution

model founded on the Dirichlet distribution with a specified pa-

rameter value of 𝛼 = 0.1, resulting in the creation of a non-IID data

distribution. Within the simulation environment, we simulated the

30 clients while the server’s capacity was restricted to 15 to emulate

the scenario with constrained capacity edge nodes supporting the

FL training/aggregation process.

The use of the default threshold determined by the CMFL model

is not feasible due to the observed variability in metric values stem-

ming from differences in dataset configurations among various

clients. To address this issue, we have chosen to employ CMFL

with a manually selected threshold value of 0.9991. Additionally,

we have configured FedAvgBE to use a fixed local batch size of 2

and set the number of training local epochs to a consistent value of

two for all clients.

5.3 Results
Along with the execution of the experiments, the accuracy of En-

tropicFL closely rivals that of the FedAvg method throughout the

Federated Learning process. Nevertheless, a notable distinction

arises from the observed performance decline in specific rounds.

This decline is attributed to the client selection process and the

model divergence assessment, which guides each client’s decision to

share their model weights with the server. In our proposed method,

EntropicFL, configured as described, we effectively mitigate the

observed ’communication overhead’ as depicted in Figure 3(a), 3(b),

and 3(c), with configurations for 𝛾 set to 0, 0.5, and 1. When the
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parameter 𝛾 is set to 0, the metric outlined in equation 3 takes exclu-

sive precedence within the selection criteria, with entropy emerging

as the dominant factor. The accuracy performance resembles that

achieved when 𝛾 remains fixed at 1.

We consistently observed that adjusting the 𝛾 parameter does

not substantially impact accuracy. Surprisingly, it yields accuracy

levels closely mirroring those of the traditional FedAvg method.

However, the remarkable aspect of this consistent accuracy is the

significant reduction in communication overhead costs. These find-

ings underscore the potential value of the 𝛾 parameter, especially

in scenarios where data exhibits temporal variations and lacks

consistency across training rounds.

This paper has introduced the use of entropy as a client selection

criterium in federated learning and combined with a mechanism

to select if the client sends or not send updates to the server. The

preliminary results show that improvements can be achieved in

terms of communication, potentially reducing bottlenecks and also

potentially reducing energy consumption in the edge devices.

Further investigation is needed in order to have more generalized

conclusions in a variety of scenarios, as well as to investigate how

to combine entropy and other additional criteria, besides model

divergence, in the client selection process.

6 CONCLUSION AND FUTUREWORK
In this paper, we have developed and evaluated a federated learning

framework that has proven to be effective in reducing communica-

tion overhead. Our solution has significantly decreased this metric

without compromising the model’s performance to a great extent,

maintaining a very similar accuracy to the FedAvg approach.

We have introduced a metric that combines entropy and model

accuracy, enriching our evaluation and enabling more informed

decision-making. Throughout our experiments, we observed ac-

cumulated communication rounds values of approximately 27.7%,

27.9%, and 29.7% for the configurations of 𝛾 = 1, 𝛾 = 0, and 𝛾 = 0.5,

respectively. These results highlight that the 𝛾 = 0.5 configura-

tion achieved the greatest reduction in the number of accumulated

communication rounds, suggesting its effectiveness in our specific

context, influenced by the characteristics of our data.

For future work, we plan to delve deeper into the relationship

between accuracy and entropy, conduct validations with more com-

plex datasets and a larger number of clients, and explore techniques

such as quantization and model pruning to further reduce commu-

nication overhead, both on the client and server sides. Addition-

ally, we will consider incorporating more advanced client selection

strategies and adapting our framework to more challenging feder-

ated learning environments.
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