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Abstract—The growing number of vehicles has led to increased
emissions of polluting gases, necessitating accurate forecasting for
effective mitigation strategies and sustainable urban development.
Leveraging computational resources in vehicles, this study presents
a framework, called EcoPredict, for predicting CO2 emissions in
collaborative vehicular network environments. The framework
implements three forms of learning methods — centralized,
federated, and split — using urban sensor networks for data
collection. Experiments carried out in realistic vehicular mobility
scenarios demonstrate the framework’s robustness and efficiency
in providing real-time emission predictions. Each learning
architecture has its own advantages and limitations regarding
performance, training time, latency, communication overhead, and
data privacy. Therefore, this work aims to assess their performance
to analyze their effectiveness in urban environments.

I. INTRODUCTION

In recent years, the number of connected vehicles has
been increasing, leading to various problems such as traffic
congestion and elevated emission of polluting gases [1].
In this scenario, modern vehicles now have the capability
to act as active agents, collecting and sharing contextual
information in their surroundings [2], [3]. The implementation
of Connected and Autonomous Vehicles (CAVs) is expected
to revolutionize urban mobility, potentially reducing traffic
jams, energy consumption, and greenhouse gas emissions, thus
helping to reduce environmental impacts [4], [5]. However,
concerns regarding personal safety and privacy issues related
to autonomous vehicles are also prominent [6].

Numerous works apply different strategies for traffic fore-
casting in CAVs, mainly highlighting the need for instantaneous
predictions [7]. Considering specifically the scenario of pol-
lutant gas emissions, accurate forecasting of carbon dioxide
(CO2) emissions is crucial for monitoring and reducing the
environmental impacts of growing urban traffic [8]. However,
research remains scarce for these environmental applications,
especially given the current challenges and impacts in terms of
data acquisition, data processing, and spatio-temporal validity
of information [7]. In this sense, adapting traffic forecasting
strategies for ecological applications can be crucial for city
planning and environmental development in big cities [4].

One of the main approaches used for prediction is Recurrent
Neural Networks (RNNs) due to their ability to handle sequen-
tial data and capture dependencies over time [9]. Additionally,
the prediction process can be carried out in three ways as
follows: (1) Centralized learning aggregates all data in a central
server, offering high model accuracy due to the comprehensive

dataset. However, it raises significant privacy concerns and
potential data transmission bottlenecks; (2) Distributed learning
processes data locally on edge devices, enhancing privacy
and reducing latency but potentially sacrificing some model
accuracy due to decentralized data handling; and (3) Split
learning offers a middle ground by dividing the model between
the edge and the server, aiming to balance the benefits of both
centralized and distributed approaches.

In this sense, comparing these approaches in the context
of urban mobility for CO2 emission prediction helps address
several key challenges. For example, centralized learning can
struggle with data privacy and communication overheads, while
distributed learning may face issues with model performance
due to data fragmentation and the dynamic nature of vehicular
scenarios. [10]. On the other hand, Split Learning (SL) provides
an opportunity to optimize the trade-offs between data privacy,
model accuracy, and operational efficiency [11]. In this way,
these approaches can assist in decision-making regarding urban
planning and applied depending on the objectives defined in
the analyses, in terms of performance and efficiency.

Considering all the points mentioned, this paper proposes
EcoPredict, a framework for comparing different learning
approaches to predict CO2 emissions in vehicular scenarios.
EcoPredict employs centralized, distributed, and split learning
in realistic mobility traces (Luxembourg and Cologne cities)
using Simulation of Urban MObility (SUMO). Also, it consid-
ers vehicular communications infrastructures as urban sensor
networks to collect vehicle CO2 emission data, generating time
series for different regions within the cities. In summary, the
contributions of this work are: (i) proposal of a framework that
employs three approaches for analyzing vehicular data in urban
scenarios, contributing to better environmental management
and more efficient urban transportation systems; and (ii) in a
detailed performance evaluation with realistic mobility traces,
we show that from the same source of vehicular data, valuable
insights can be extracted for urban planning.

This paper is organized as follows. Section II introduces the
system model, scenario description, problem definition, and
EcoPredict operation. Section III discusses the performance
evaluation and results obtained. Finally, Section IV presents
the conclusions and future works.

II. SYSTEM OVERVIEW

This section describes EcoPredict, a framework designed to
predict CO2 emissions in urban mobility environments using
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centralized, distributed, and split learning approaches.

A. System model

The system model employed in this work is composed
of vehicles, communication infrastructures (e.g., Roadside
Units (RSUs)), and a remote server in the Internet cloud.
In this scenario, vehicles move around the city and can
communicate with the RSUs. Each RSU ri, denoted as
ri ∈ R = {r1, r2, . . . , rm}, has its coverage area in meters,
can collect data from all roads within its coverage, and has
wired communication with the remote server. Each road is
denoted as sj ∈ S = {s1, s2, . . . , sn}. The city is divided into
|R| regions, where |R| = m and represents the number of
RSUs present in the scenario. In this scenario, RSUs act as
urban sensors, which measure parameters like average speed,
fuel consumption, and CO2 emissions.

Figure 1 presents the components of the framework in detail.
In essence, EcoPredict is composed of five modules, which
are called phases, ranging from input data processing (Phases
1 and 2) to the service deliver (Phase 5) generated through the
Machine Learning (ML) models (Phase 4). Additionally, the
Context Selector module (Phase 3) provides network operators
with the ability to identify the context for decision-making
regarding which ML model to use, depending on the previously
defined operational objectives. Considering these aspects, this
work presents a case study on the application of the framework
for predicting greenhouse gases in vehicular environments.
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Fig. 1. EcoPredict structure with its main phases.

With the historical data gathered by each RSUs, a ML model
can be trained to learn the CO2 emissions patterns and predict
how will the the emissions in the near future. One advantage
of this framework is its customization capability, where the
components of each phase can be modified according to the
type of data being processed and the model trained. Each phase
will be explained in detail below.

B. EcoPredict phases

1) Input Data: CO2 emission data is collected by RSUs ev-
ery 10 units of time (seconds, in this case), which can reported
by the vehicles through beacon messages that are naturally
sent in vehicular networks or by sensing and measuring the
CO2 emissions within the region. Since the data is collected at
regular intervals, it produces a time series containing CO2 emis-
sion data over time. In summary, let Z(i) = {z1, z2, . . . , zk}
be a vector that represents the collected data over time k

for each RSU ri, in which each element consist of a tuple
{timestamp, vehicleId, vehicleRoad, co2Emission}.

2) Preprocessing: The preprocessing stage is fundamental
in any ML model application. In our case, the steps included
data cleaning, normalization, and feature extraction. First, any
missing or inconsistent data points were resolved to ensure the
integrity of the dataset by calculating the 60-sample moving
average. Then the data is normalized to a common scale to
improve model performance. One specific transformation was
the conversion of raw CO2 emission values into a time series
format, enabling temporal pattern recognition essential for
accurate forecasting in ML models.

3) Context Selector: The context selection phase allows
for the identification of data behavior, such as trends, season-
ality, stationarity, dependencies between variables, etc. Also,
understanding the characteristics of the devices involved in
the learning process is also an important factor at this stage.
With this, network operators can determine which ML models
are most suitable for the identified context. This enables more
accurate decision-making to achieve the defined objectives.

4) Learning: In this phase, three different architectures can
be employed to train the ML model. Figure 2 shows the learning
methods that can be used, which are detailed described bellow:

• Centralized Learning: in this approach (Figure 2(a)),
the end devices (e.g., smartphones, vehicles, RSU, etc.)
produce data and share it with a central model (i.e., remote
server). This way, the central model can be trained with all
the generated data, consequently ensuring better learning.
However, this architecture has substantial limitations
related to latency, security, and data privacy.

• Federated Learning (FL): enables an efficient and
collaborative model while ensuring data security and
privacy for the devices and maintaining low latency [12].
FL is an implementation of distributed learning. In this
setup (Figure 2(b)), edge devices (also called clients)
produce data and train a model locally. However, this
model is then shared with a central server responsible for
aggregating the knowledge from all received models. For
model sharing, devices only share the weights or gradients
learned during the training phase. This way, a new
collaborative model is generated, which is then shared with
the end devices again for further iterations. This process
occurs over multiple stages, known as communication
rounds. Therefore, this approach can produce a more
robust model, as it is aggregated with the knowledge
generated by all the devices in the system. Additionally,
it ensures user data privacy since only models, not raw
data, are shared between the devices and the server.

• Split Learning (SL): allows the training of a model in
a distributed manner by splitting a global model into
smaller parts that are distributed to different devices. In
this way, each device trains only a portion of the model
and sequentially forwards the result to another device
to continue the training. In this approach (Figure 2(c)),
devices can either forward the results to other devices
or to the server. For example, end devices RSUs can
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Fig. 2. Examples of the training approaches investigated. Even starting from the same scenario, each approach has its own specific operating characteristics.

execute the initial layers of the model and then send the
intermediate results to other devices and/or the cloud to
feed the remaining layers and produce the final results.

5) Output Data: At the end of the learning process, the
output data (i.e. the model predictions) are provided. This
information can be not only used to support better urban
planning decisions, but also serve as input for intelligent
services to reduce CO2 emissions [13].

Each of the learning architecture has advantages and limi-
tations regarding performance, training time, latency, commu-
nication overhead, and data privacy. Hence, it is important to
assess their performance to analyze which one wold be better
depending on the scenario that they will be employed and the
restrictions regarding resource and privacy constraints.

III. SYSTEM EVALUATION

This section introduces the methodology and metrics used
to evaluate the effectiveness of the proposed framework for
predicting CO2 emissions considering different learning archi-
tectures. The evaluation focuses on comparing the performance
of the learning approaches of the proposed framework, using
the Mean Squared Error (MSE) as an indicator of performance,
as well as training time to assess the computational cost.

A. Scenario description and Methodology
The experiments were carried out with the Simulation

of Urban MObility (SUMO) 1.16.0. The algorithms were
implemented in Python 3.12.0 and connected to SUMO through
the TraCI interface. To evaluate the framework in different
scenarios, we considered three well-known realistic vehicular
mobility traces1: TAPASCologne and Luxembourg SUMO
Trace (LuST). Both TAPASCologne and LuST have 24 hours
of vehicular mobility data. We consider 30% of the traffic in
each scenario. The RSUs’s positions were considered based on
the OpenCelliD2 information. Each RSU collects the data from
all the roads that are under coverage. Moreover, we use a Fast
Ethernet communication link of 100 Mbps between RSUs and
the remote server. Therefore, as the RSU data is aggregated to
create a single time series per RSU, they represent the clients
in each training approach.

The data that can be collected and processed by EcoPredict
is diverse, including fuel consumption, noise emission, CO2

1https://sumo.dlr.de/docs/Data/Scenarios.html
2https://www.opencellid.org/

emission, Nitric Oxide (NOx) emission, average speed in the
region covered by the RSU, among others3. However, in our
experiments, we only considered CO2 emissions for the case
study. In this way, for training the ML models, a 65/35 approach
was used for the creation of training and testing data, given
the arrangement of the data during the time range. Figure 3
illustrates the division of the datasets (for each scenario.
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Fig. 3. Example of data (CO2 emission in grams × 1000) of Roadside Unit
(RSU) used for the training and prediction processes in each vehicular mobility
scenario.

Furthermore, for the model trained, we use the following
hyperparameters: The model used for predicting CO2 emissions
is a Convolutional Neural Network (CNN)-Long Short-term
Memory (LSTM) implemented using TensorFlow and Keras
libraries. The architecture includes one Conv1D layer with 64
filters, a kernel size of 2, and ReLU activation, followed by an
LSTM layer with 50 neurons and ReLU activation, and finally
a Dense layer with 1 neuron for the output. The model uses
the Adam optimizer and MSE as the loss function. The output
of the model is a prediction of future CO2 emission values
based on the input time series data.

Hereafter, EcoPredict fits the model through the learning
architecture to predict the CO2 emissions considering a
prediction horizon. We use several prediction horizons to
evaluate the performance of the model raging from 5 steps
in the future to 30 steps. For the centralized architecture we
considered 50 epochs to fit the model with a batch size of 64.
On the other hand, to implement the distributed architectures
(i.e. FL and SL) we use Flower framework [14] that allows

3https://sumo.dlr.de/docs/Simulation/Output/
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Fig. 4. Comparison of the average MSE for each RSU in LuST (a) and TAPASCologne (b) scenarios considering each one of the learning architectures.

the communication between the clients and the server through
gRPC. In particular, to implement the split-learning architecture,
we adapt the framework to work as desired, thus we kept the
CNN at each client and the LSTM and Dense layer in the
server. In this way, clients have to pass their local data through
the CNN layer to produce the activation’s and send them to the
server, then the server passes the activations received from each
client to the LSTM and dense layer to finalize the feed-forward
process. After that, the server is responsible to measures the
error of the model and start the back-propagation to adjust
the gradients of the entire model, thus the gradients must be
sent to the client to finish the training process. Finally, FL we
considered 5 training rounds and 10 local epochs and for SL
50 communications between client and server were performed
to train the model.

B. Learning Architecture Analysis

To evaluate each learning architecture for predicting CO2

emissions, we considered the error in predictions based on MSE
and training time. Figure 4 illustrates the prediction perfor-
mance (i.e., error) for some RSUs in each scenario, considering
centralized, split, and federated learning architectures. Each
line cell in the figure represents the average error for one RSU

considering a specific prediction horizon, with the cell color
representing the MSE for that configuration.

As expected, the centralized approach achieved the best
results in both scenarios, followed by the SL and FL architec-
tures. Despite the better performance in terms of loss values,
the centralized architecture suffers from the high volume of
data that needs to be fed into the model. All data from the
RSUs must be sent to the cloud, consequently increasing the
communication overhead and training time, as shown in Table I.
Moreover, for other types of services that may contain sensitive
data, this approach also presents privacy issues.

TABLE I
MEAN TRAINING TIME IN EACH SCENARIO.

Scenario
Learning approach

Centralized Federated Split

LuST 6270.33 ± 25.44 886.9 ± 19.25 4548.59 ± 40.79
Cologne 5077.50 ± 66.11 977.3 ± 50.1 3955.89 ± 30.67

On the other hand, the SL approach maintains similar
performance in terms of MSE. However, it potentially increases
the communication overhead and training latency due to



the communication between clients and the server required
during the feed-forward and backpropagation process. In our
experiments, we split the model into two parts (i.e., the
CNN layer was placed on the clients while the LSTM and
Dense layers were placed on the server), thus not introducing
significant overhead in the process. However, this approach
compromises privacy, as data must be sent to the server to
compute the error and initiate backpropagation. This issue
could be mitigated by placing the error estimation on the client
side. However, this would also increase the communication
overhead, as additional communication would be required for
each iteration. It is important to note that the SL approach is
sequential, meaning that the RSUs are trained one at a time.
Consequently, the latency introduced in the system may affect
the last clients in the queue, as they need to wait for the training
process of all preceding clients to complete.

TABLE II
MEAN LOSS VALUE BY HORIZON IN EACH APPROACH/SCENARIO.

Scenario Learning approach

Horizon Centralized Federated Split

L
uS

T

5 2.23E-06 ± 1.57E-06 2.96E-06 ± 1.58E-06 2.33E-06 ± 9.76E-07
10 5.95E-06 ± 3.63E-06 6.56E-06 ± 2.94E-06 5.56E-06 ± 2.14E-06
15 8.64E-06 ± 5.42E-06 9.78E-06 ± 4.31E-06 9.01E-06 ± 3.29E-06
20 1.15E-05 ± 3.23E-04 1.22E-05 ± 4.67E-06 1.26E-05 ± 4.94E-06
25 1.50E-05 ± 1.13E-05 1.71E-05 ± 6.78E-06 1.61E-05 ± 6.14E-06
30 1.71E-05 ± 2.03E-04 2.45E-05 ± 1.37E-05 1.88E-05 ± 6.69E-06

C
ol

og
ne

5 3.39E-05 ± 2.73E-06 2.69E-05 ± 5.37E-05 2.84E-06 ± 3.89E-06
10 2.10E-05 ± 2.24E-05 2.29E-05 ± 2.73E-05 6.41E-06 ± 8.57E-06
15 3.35E-05 ± 3.91E-05 2.69E-05 ± 3.59E-05 1.00E-05 ± 1.32E-05
20 4.74E-05 ± 3.93E-05 3.06E-05 ± 3.81E-05 1.35E-05 ± 1.78E-05
25 5.74E-05 ± 1.14E-05 3.38E-05 ± 3.33E-05 1.71E-05 ± 2.25E-05
30 6.62E-05 ± 4.02E-05 3.89E-05 ± 3.59E-05 2.04E-05 ± 2.63E-05

Finally, FL not only reduces the communication overhead
due to fewer interactions between clients and the server, but
also reduces the training overhead as multiple clients (i.e.,
RSUs) are trained in parallel (see training time in Table I).
In addition, since no data is sent to the cloud, it ensures the
privacy of the clients, which can be crucial in some applications
[13]. Although FL enabled a reduction in communication and
training overhead, it also slightly reduced the performance
of the model compared to other approaches. However, this
decrease is very small, as presented in Table II, and thus is
unlikely to significantly degrade the performance of the system
using this approach.

IV. CONCLUSION

This work assesses the performance of distributed and
centralized Machine Learning (ML) methods for predicting
urban emissions. A framework is described that allows for
the implementation and evaluation of centralized, Federated
Learning (FL), and Split Learning (SL) architectures in urban
scenarios, including TAPASCologne and LuST. Each learning
architecture was analyzed by considering the quality of the
predictions in terms of errors (i.e., Mean Squared Error (MSE)
loss) and the computational overhead required to train the
model. Each learning architecture has its own advantages
and limitations regarding performance, training time, latency,
communication overhead, and data privacy. Hence, it is

important to assess their performance to determine which
architecture is best suited for specific scenarios, considering
the resource and privacy constraints.

As future work, we will consider additional metrics to
evaluate the framework, implement more robust algorithms
for distributed methods, and explore other models and data
that can be used.
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