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Resumo

A indústria automobilística vem investindo continuamente na modernização dos veículos,
aprimorando suas capacidades de comunicação e processamento de dados. Seguindo essa
evolução, o paradigma de Computação de Borda Veicular (VEC) surge com a finalidade
de prover serviços de computação em nuvem próximo aos usuários veiculares, utilizando os
recursos computacionais dos próprios veículos. Nesse cenário, veículos e infraestruturas de
comunicação podem cooperativamente atender serviços/aplicações veiculares, agregando
seus recursos e disponibilizando-os por meio das Nuvens Veiculares (VCs). Para que essa
disponibilização aconteça, os seguintes processos devem ser realizados: (i) Formação de
VCs, que é o agrupamento dos veículos e seus recursos computacionais disponíveis; e
(ii) Escalonamento de Tarefas, que tem como finalidade decidir em qual das VCs um
determinado conjunto de tarefas será processado. Além disso, realizar balanceamento de
carga entre as VCs é fundamental para aumentar a justiça na utilização dos recursos e
tornar a distribuição de carga na rede mais homogênea. No entanto, a mobilidade é um dos
principais desafios na proposição de soluções nesses cenários, uma vez que a mobilidade
veicular provoca diversas mudanças na topologia da rede e conexões intermitentes.

Nesse contexto, esta tese apresenta um estudo de como se dá a formação das VCs
e como as aplicações podem utilizar os recursos dessas nuvens de forma eficiente para
processamento de dados e, com isso, auxiliar em tomadas de decisão que exigem baixa
latência e tempo de processamento restrito. Além disso, esta tese propõe uma série de
mecanismos para lidar com diferentes aspectos da mobilidade na borda da rede veicular.
A primeira contribuição desta tese reside em uma solução ciente de mobilidade para esti-
mar o tempo de permanência dos veículos em uma determinada região e, assim, mitigar
os impactos da mobilidade na formação de VCs. Como segunda contribuição, foi proposto
um mecanismo de escalonamento de tarefas que utiliza uma arquitetura de Rede Neural
Recorrente (RNN) para estimar os recursos computacionais nas VCs e garantir que as de-
mandas dos usuários sejam atendidas. Essa abordagem consegue aumentar o número de
tarefas escalonadas, diminuir a latência geral do sistema e diminuir os custos monetários
pela utilização dos recursos computacionais. A terceira contribuição se volta no aumento
da justiça e balanceamento de carga na utilização dos recursos das VCs. As principais
vantagens desse último mecanismo incluem: (i) um escalonamento de tarefas que maxi-
miza o número de tarefas escalonadas e processadas com sucesso enquanto mantém um
balanceamento de carga justo no uso de recursos computacionais e (ii) o uso de mul-
tithreading para resolução paralela de subproblemas de escalonamento, visando reduzir a
latência do sistema sem comprometer o desempenho geral da solução.

As soluções propostas foram amplamente comparadas com outras soluções da lite-
ratura em diferentes métricas de avaliação de desempenho e considerando cenários de
mobilidade realísticos. Os resultados mostram que as abordagens propostas são eficientes
e escaláveis, nas quais podem ser boas alternativas para mitigar os desafios impostos pela
dinamicidade da mobilidade veicular nos ambientes de VEC.



Abstract

The automobile industry has being continuously investing in the modernization of vehicles,
improving their communication and data processing capacities. Following this evolution,
the Vehicular Edge Computing (VEC) paradigm emerged to provide computing power and
storage capability close to vehicular users. In this scenario, vehicles and communication
infrastructures can cooperatively attend vehicular services/applications, aggregating their
resources and making them available through Vehicular Clouds (VCs). For this availability
to happen, the following processes must be carried out: (i) VC Formation, which is the
grouping of vehicles and their available computational resources; and (ii) Task Scheduling,
which aims to decide which of the VCs a given set of tasks will be processed. Also, carrying
out load balancing between the VCs is essential to increase fairness in the use of resources
and make the load distribution in the network more homogeneous. However, mobility
is one of the main challenges in proposing solutions in these scenarios, since vehicular
mobility causes several changes in the network topology and intermittent connections.

In this context, this thesis presents a study of how VCs are formed and how appli-
cations can use the resources of these clouds efficiently for data processing and, with
that, help in decision making that requires low latency and restricted processing time.
Furthermore, this thesis proposes a series of mechanisms to deal with different aspects
of mobility at the edge of the vehicular network. The first contribution of this thesis
lies in a mobility-aware solution to estimate the dwell-time of vehicles in a given region
and thus mitigate the impacts of mobility on the VC formation process. Secondly, a
task scheduling mechanism was proposed that uses a Recurrent Neural Network (RNN)
architecture to estimate computational resources in VCs and ensure that user demands
are met. This approach manages to increase the number of scheduled tasks, decrease the
overall system latency, and reduce the monetary costs for using computational resources.
The third contribution focuses on increasing fairness and load balancing in the use of VC’s
resources. The main advantages of the latter mechanism include: (i) a task scheduler that
maximizes the number of tasks successfully scheduled and processed while maintaining
fair load balancing in the use of computational resources and (ii) the use of multithreading
for parallel solving of scheduling subproblems, aiming to reduce system latency without
compromising the overall performance of the solution.

The proposed solutions were widely compared with other state-of-the-art solutions in
different performance evaluation metrics and considering realistic mobility scenarios. The
results show that the proposed approaches are efficient, scalable, and cost-effective, which
can be good alternatives to mitigate the challenges imposed by the dynamics of vehicular
mobility in the VEC environments.
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Chapter 1

Introduction

This chapter presents the motivation, objectives, and main contributions of the thesis, as
well as the thesis outline.

1.1 Motivation

In recent years, the number of vehicles has grown significantly worldwide. With more
than 1 billion vehicles in circulation, some estimates point out that the number of vehicles
growth exceeding 1.2 billion by 2050 [24, 98, 96]. Furthermore, the number of connected
vehicles globally is expected to grow from 192 million this year to over 367 million in
2027 [149]. Especially in Brazil, the vehicle fleet has been growing every year since 2010,
according to a recent report presented by the National Union of the Component Industry
for Motor Vehicles [133], as can be seen in Figure 1.1.
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Figure 1.1: Circulating fleet of vehicles in Brazil between the years 2010 and 2022.

In this sense, the growing number of vehicles has resulted in frequent traffic jams and
accidents on the roads, in addition to causing an increase in the amount of data to be
transferred to cloud servers [44, 14]. However, traffic jams and accidents can be mitigated
by providing drivers with adequate safety information about road conditions, surrounding
environments, and critical driving situations [98]. Thus, in addition to meeting the grow-
ing demand in the automotive sector, there is also an effort by academia and industry to
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enable vehicles to become increasingly intelligent, reliable, safe, and, thus, to be able to
act as active agents in the processes that they involve, whether on highways or in urban
centers [105, 42, 120, 141].

Vehicles today have a variety of computing resources to provide maximum comfort and
safety to drivers and passengers [42, 153]. The vehicle modernization process concerns
both the increase in wireless communication capacity and the addition of computational
and sensing power, directing them towards increasingly intelligent and connected de-
vices [48, 82]. For example, the Tesla Inc.’s Model X electric vehicle has connectivity
to the Long Term Evolution (LTE) network, frontal radar for identifying objects up to
250 meters away, 8 cameras, and 12 ultrasonic sensors for detecting track lanes and sur-
rounding objects, providing 360 degrees of visibility, speed adjustment based on visual
identification of traffic signs and overtaking management in a totally autonomous way [66].

In the same direction, Vehicular Ad-Hoc Networks (VANETs) emerged as a wireless
communication paradigm that allows direct communication between vehicles and other
connected devices, through Vehicle-to-Everything (V2X) communication [31, 146]. With
VANETs, vehicles can collect and share data to assist other entities in their decision-
making processes, whether locally disposed entities or remote ones on the Internet cloud.
In this context, several applications can be proposed for vehicular problems, such as detec-
tion and control of traffic jams, collision prevention, road warnings, and other applications
of Intelligent Transportation Systems (ITSs) [12, 110].

A consolidated research area that is strongly related to VANETs is Cloud Computing,
which by definition emerged to relieve the processing that was previously executed locally
and is now executed in instances over the Internet [123, 79]. However, the rapid evolution
of mobile devices, their applications, and the amount of data generated by them cause
a significant increase in bandwidth consumption and congestion in the Internet network
core [14]. In this scenario, Edge Computing emerges, making cloud computing services
closer to end users [20]. Edge is an extension of Cloud Computing that brings resources
to the network edge, aiming to reduce latency in serving user demands and reduce traffic
in the network core. This paradigm was conceived to support applications and services
that do not fit well in the traditional Cloud Computing paradigm, that is, that require
characteristics such as low latency, geographic distribution, mobility, high resiliency, and
large-scale distributed systems [23, 125] .

Given this evolutionary scenario, the Vehicular Edge Computing (VEC) paradigm
arises, primarily aggregating and utilizing the vehicles’ computational resources available.
In other words, VEC merges the operational principles of VANETs and Cloud Computing
services, emerging as a non-trivial variant of traditional Cloud Computing [111]. The
computational resources available in vehicles include processing, communication, storage,
and sensing capabilities, which can be dynamically collected and grouped into vehicle
groups, otherwise known as Vehicular Clouds (VCs). The cloud, drivers, passengers, and
users all benefit from the aggregation of these resources and their efficient distribution
as cloud computing services closer to vehicular users [12, 4]. This assumption serves as
the basis for many researchers in the VEC field, a relatively new and promising area for
enhancing the computational resources available in the vehicular environment [50, 59, 16,
159, 19, 29, 14].
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The use and management of VC resources can be divided into two main steps: (i) VC
Formation, which aims to group the vehicles based on some characteristic, and with that,
the computational resources available in these vehicles are grouped; and (ii) Task Schedul-
ing, whose purpose is to decide which VC a particular application will run on, as well
as manage in real time the resources available in that cloud after the scheduling process.
However, due to the high mobility of vehicles, some challenges must be overcome. The
VC formation is directly compromised by vehicular mobility, since the stability and main-
tenance of these clouds depends on robust algorithms that somehow mitigate the impact
of mobility. Furthermore, if the VCs formed are not stable, the task scheduling process
becomes imprecise, since it is important to ensure that the processing times (deadlines)
of the tasks are respected. Another important point is the fair use of aggregate compu-
tational resources. That is, the scheduler must apply, whenever possible, a load balance
between the available VC and avoid processing overhead on specific VCs.

Considering all points mentioned above, it is important to provide solutions that use
the computational resources of the VCs and the constructed knowledge of the scenario
for decision-making regarding the storage and processing data. Besides, the type of data
collected and the service that will be offered to the user to meet the most diverse operating
scenarios must be taken into account. In other words, it is essential to seek solutions for
creating stable VCs that allow maximum use of the resources present in vehicles. In
addition, it is important to propose solutions that consider the VCs formed to make such
added resources available to vehicle users who need processing power and/or storage to
execute one or more services. This resources availability must be fair and balanced to
avoid overloading and underutilizing the available VCs.

1.2 Objective

The main objective of this thesis is the efficient resource management in VEC systems
through the design, implementation, and evaluation of collaborative systems for VC for-
mation and fair and balanced task scheduling. To achieve this goal, we need to answer
the following questions:

• Many approaches for VC formation have been proposed in the literature with the
aim of selecting the most stable vehicles in a given region, such as Roadside Unit
(RSU)/Base Station (BS)’ coverage radius, and making it the leader of this group.
This problem revisits the classic Cluster Head (CH) definition problem in compu-
tational clusters. In the case of VCs, mobility must be taken into account when
choosing these leading vehicles. If the leader selection is not efficient, the VCs will
not be stable enough to process tasks that require a non-trivial processing time.

Research Question 1: How to form more stable VCs and ensure longer lifetimes?

• High mobility of nodes is the main characteristic of VANETs. In this sense, strate-
gies must be employed so that, when using the computational resources of the VCs,
which are mostly composed of vehicular resources, vehicular mobility is not a factor
that directly impacts the performance of scheduling solutions. Many works try to



21

mitigate the impacts of mobility using techniques to estimate the future positioning
of vehicles and make decisions based on this information. Some of these approaches
need a priori knowledge of vehicle dynamics, which makes these solutions dependent
on accurate vehicle mobility information.

Research Question 2: How to ensure that the topological dynamics of the Vehic-
ular Ad-Hoc Networks (VANETs) does not negatively influence task scheduling in
Vehicular Clouds (VCs)?

• Numerous works consider VC formation processes aided by communication infras-
tructures, such as RSUs and BSs. Vehicles have their resources added while they
are covered by these infrastructures. If several VCs are formed in a city and the
scheduler identifies certain regions with high resource availability, it is natural for
the scheduler to prioritize these VCs in its decision-making process. However, if
we look at it from a load balancing and fairness perspective, this scheduler is con-
centrating in a specific region all the processing workload of the VEC environment.
This unbalanced decision can overload infrastructures and negatively impact the
Quality of Service (QoS) offered by this infrastructure to other applications.

Research Question 3: How to use the computational resources of Vehicular Clouds
(VCs) in a fair and balanced way without degrading the system’s overall efficiency
in task scheduling?

1.3 Main Contributions

The main thesis contributions are a mobility-aware vehicular cloud formation mechanism
for VEC environments, a mobility- and deadline-aware task scheduling approach, and a
fairness task scheduling study on the multiple available VCs. In summary, we have:

1. Vehicular Cloud Formation Using Mobility Prediction Information

This contribution concerns the proposal of a mobility-aware mechanism that en-
hances the VC formation process. The mechanism leverages the vehicular mobility
predictions provided by RSUs to select the most stable vehicles within the RSU
coverage area to lead the VC, thereby increasing the VC’s lifetime. Vehicle stability
is measured by the dwell time, representing the duration a vehicle spends within
the RSU coverage area. To achieve this, RSUs receive contextual information from
vehicles through the natural beacon exchange in VANET. This information is ag-
gregated at the city intersections at certain intervals, and the RSU executes the
VC formation process. The number of VCs formed is proportional to the number
of RSUs in the scenario. Additionally, a VEC Controller at a higher level in the
network can oversee these VCs and manage their aggregated resources. Simula-
tion results (presented in Section 4.4) demonstrate the superior performance of this
approach compared to other VC formation mechanisms.

2. Mobility- and Deadline-aware Task Scheduling Mechanism
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This contribution concerns the proposal of a task scheduling mechanism to maximize
the number of tasks scheduled while minimizing the monetary costs of utilizing VC’s
resources. The proposal runs on VEC controllers to coordinate the task schedul-
ing in multiple VCs. A vehicle without enough computational resources to run a
specific task can forward this task to be processed somewhere in the vehicle ecosys-
tem. In this sense, the solution selects a set of tasks to be scheduled in real-time
in each available VC based on the Pareto optimality and Bin Covering Problem
(BCP). Pareto optimality allows the joint minimization between the deadline and
estimated processing time. Besides, the BCP makes it possible to find the best
fit for the minimization provided by Pareto, always seeking to maximize the num-
ber of scheduled tasks. The proposal also considers a Long Short-Term Memory
(LSTM) to predict resource availability in each VC based on vehicular mobility in-
formation. Hence, prioritizes scheduling tasks in VCs with more available resources
to maximize the fulfillment of demands in as few rounds as possible. Simulation
results show that (presented in Section 5.4), compared to state-of-the-art solutions,
the solution proposed can schedule more tasks while minimizing monetary cost and
system latency.

3. Fairness and Load Balancing in VEC Systems:

This contribution concerns the proposal of a fair task scheduling approach that
maximizes both successfully scheduled tasks and load balancing and fairness in the
use of computational resources. This solution runs on VEC controllers and uses
Pareto optimality to schedule tasks in different VCs. The mechanism splits the set
of tasks into different parts to improve the system efficiency with parallel manage-
ment, obtaining k different Pareto sets and being able to make k decisions at the
same time, where k is the number of threads running in each VEC controller. It
aims to minimize processing time within VCs, thus reducing resource utilization and,
subsequently, monetary costs. Also, it considers contextual aspects in its decision
process, such as resource mobility in each VC and task’s requirements. We assessed
the efficiency of this approach compared to other mechanisms, and the results (pre-
sented in Section 6.4) indicate its capability to schedule a larger quantity of tasks,
minimize monetary costs, and reduce overall system latency. Lastly, the proposal
employs better load balancing in the scheduling process, resulting in greater fairness
in the resource usage of VCs.

It is important to highlight that the solutions presented in this thesis are published in
relevant conferences and prestigious journals on computer networks and communication.
The conferences in which the solutions were published include IEEE Vehicular Technology
Conference (VTC) [39, 37, 34] and Brazilian Symposium on Computer Networks and Dis-
tributed Systems (SBRC) [40, 36, 32]. On the other hand, the published journals: IEEE
Transactions on Intelligent Transportation Systems [35], Elsevier Ad hoc Networks [38],
and Elsevier Vehicular Communications (Under Review). The complete list of publica-
tions are presented in Chapter 7 in Section 7.3.
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1.4 Thesis Outline

The structure of this thesis is outlined in chapters as follows:

• Chapter 2 provides the background for this thesis describing a theoretical basis
on VANETs and their challenges. Also, it presents the concept of Cloud and Edge
Computing and how the union between these two paradigms happens to create the
VEC paradigm. Finally, a comprehensive discussion is offered, examining charac-
teristics and challenges associated with this scenario.

• Chapter 3 describes the related work highlighting the limitations and advantages
of literature solutions for VC Formation, Task Scheduling, and Fairness and Load
Balancing. Moreover, qualitative comparison and classification are proposed.

• Chapter 4 proposes and evaluates an efficient VC formation mechanism that uses
mobility prediction to select the most stable vehicles in the network to coordinate
their respective VCs, called PREDATOR. Such an approach mitigates the constant
exchange of information between the vehicles and the RSU that executes the mech-
anism. The stability of PREDATOR is tested with a real time task scheduling
application and it proves to be efficient.

• Chapter 5 proposes and assesses a mobility- and deadline-aware task scheduling
mechanism for VEC, called MARINA. MARINA uses Pareto optimality and BCP to
schedule tasks in the available VCs. Furthermore, MARINA employs an Recurrent
Neural Network (RNN) architecture to estimate computational resources in each
VC. MARINA efficiently schedules more tasks and reduces both system latency and
monetary cost.

• Chapter 6 presents and evaluates a task scheduling mechanism that considers con-
textual aspects of its decision process and applies a probabilistic selection function
on VCs to balance the processing load and increase the fairness in the use of vehicu-
lar resources, called FARID. Also, FARID applies a segmentation in the task queue
to reduce the scheduling problem and uses multithreading to solve each subproblem
in a parallel way.

• Chapter 7 concludes this thesis with a summary, describes directions for future
work, discusses the challenges faced, and presents the publications produced from
this thesis.
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Chapter 2

Background and Key Concepts

This chapter presents the concepts that will be used in this thesis. Initially, a theoretical
basis on VANETs and their challenges is presented. Then, a study of Cloud Computing
is carried out and how the union between Cloud and Edge Computing happens to create
the VEC paradigm and its main entity called VC. In addition, a discussion of the unique
challenges and characteristics that VCs have is presented.

2.1 Vehicular Ad Hoc Networks

In VANETs, the nodes are the vehicles, and the orientation of the public road limits
the movement of these nodes. VANETs inherit the main characteristics of Mobile Ad
hoc Networks and can function in three communication types. The first is Vehicle-to-
Infrastructure (V2I) communication, with access points to provide Internet access and
routing for transmissions. Such infrastructures can be either RSUs or BSs. Vehicles
communicate with this infrastructure to access the desired service, as illustrated in Fig-
ure 2.1. However, this type of communication has high implementation and maintenance
costs [30].

Another type of communication is Vehicle-to-Vehicle (V2V), where all nodes commu-
nicate directly with each other and play the role of routers for forwarding data through
multiple hops between source and destination. This is possible through a vehicle-installed
networking device called an On-Board Unit (OBU) that connects to the Dedicated Short-
Range Communication (DSRC) wireless network. Connectivity between nodes depends
on the network density and how vehicles are moving along the road, that is, their mobility
pattern. Figure 2.1 illustrates V2V communication between two vehicles.

Finally, there is the V2X communication, which represents the communication between
the vehicle and any other device [47, 8]. The node can communicate with another node
ad hoc and/or communicate with an infrastructure to consume certain content and/or
service. Figure 2.1 illustrates V2X communication between vehicle-Unmanned Aerial
Vehicle (UAV) and vehicle-Intelligent Traffic Light. This type of communication is widely
explored because it combines different services, always seeking to adapt to the user’s
needs. For example, at a certain point in the trip, passengers decide to watch a video on
the Internet, and, at another point in the trip, a message about an accident on the road
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Figure 2.1: Different types of communication in VANETs.

is propagated between the vehicles to avoid accidents.
This type of network is already quite exploited, so much so that it has its own DSRC

spectrum. It uses IEEE 802.11p as a wireless network interface, also known as Wireless
Access in a Vehicular Environment (WAVE) which has been adjusted for operations with
low overhead in the DSRC spectrum, with a range of hundreds of meters and transfer
rate of up to 27 megabits per second [78]. This communication possibility was initially
thought for security applications, which allocate a certain propagation spectrum, however,
this was expanded and other categories of applications are supported.

In this scenario, applications on VANETs can be classified into three categories [30]:

• Safety and Security: that allows the driver to receive warnings about road con-
ditions, accidents, and warnings about events that may impact their well-being and
that of passengers.

• Entertainment: where most applications are associated with Internet access and
use inside the vehicle, for video, image, and other media consumption.

• Driver Assistance: applications focused on automating certain tasks such as, for
example, locating gas stations, service areas, and tourist information.

Each application has well-defined and distinct operating requirements, such as security
applications requiring high propagation speed and low delivery delay. On the other hand,
entertainment and assistance applications require more bandwidth, as the content is often
multimedia (image, audio, and video). Moreover, traffic management applications that fit
the driver assistance category require data describing traffic mobility patterns to efficiently
serve the central management or vehicles comprising a distributed traffic management
system. Currently, learning applications for artificial intelligence require a high amount
of data exchanged among network components [65].

2.2 Cloud and Edge Computing

Cloud Computing is defined as a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources. These resources
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can be servers, storage, applications, and services, which can be rapidly provisioned and
released with minimal management effort or service provider interaction [101]. Some
important and innovative features have been introduced by Cloud compared to traditional
local systems.

Among these advances, the following can be highlighted:

• On-demand provisioning of computing resources, storage, and services. Which does
not lock the user into planning the supply of physical resources.

• Resources “unlimited” available to users. With numerous data centers distributed
around the world, Cloud companies are investing more and more so that this “infi-
nite” resource capacity remains valid.

• Possibility for users to rent services and resources according to their needs. Offering
flexible alternatives for acquiring extra hardware resources only when a real need is
handy for small companies, leaving aside the need to build local infrastructure.

Other characteristics of the Cloud is the way of offering the resources. This selective
offering can be divided into three major types, described as follows.

• Infrastructure-as-a-Service (IaaS): A cloud service provider makes elastic re-
sources such as computing resources, network connections, and storage capacity
available to customers through virtualization technology [54]. Amazon EC21 and
Google Compute Engine2 are examples of this service.

• Platform-as-a-Service (PaaS): PaaS provides the means for users to develop,
run, and manage applications, providing a platform where users do not have to
worry about the lower-level details of the environment. Microsoft Azure3 and Google
AppEngine4 are examples of this type of service.

• Software-as-a-Service (SaaS): The provider is responsible for maintaining soft-
ware, licensing applications, and making software available to customers on-demand.
Typically, the suite consists of office suites, messaging system, a data management
system, customer relationship management systems, and antivirus. IBM Cloud5 is
an example of a provider offering this type of service.

However, it was identified that some applications were unsatisfied with the Cloud
resources. The major problem is that specific requirements of some applications, such
as low latency and real-time processing, were not met with the efficiency required by
the fact that the cloud data centers are geographically distributed worldwide. Also,
the massive data exchange between devices and applications in the Cloud can cause
congestion in the network core [64, 14]. In this sense, a type of cloud computing emerges

1https://aws.amazon.com/ec2
2https://cloud.google.com/compute
3https://azure.microsoft.com/en-us/
4https://cloud.google.com/appengine/
5https://www.ibm.com/cloud

https://aws.amazon.com/ec2
https://cloud.google.com/compute
https://azure.microsoft.com/en-us/
https://cloud.google.com/appengine/
https://www.ibm.com/cloud
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that brings processing, communication, and storage resources closer to the user to meet
the requirements of specific applications. This type of cloud computing is called Edge
Computing [125].

The Edge Computing paradigm attracts the attention of researchers for its potential to
satisfy requirements previously not met by traditional Cloud Computing [55]. Edge Com-
puting helps devices with low resource capacity and extends the computational resources
available in the cloud infrastructure to the network edge, providing mobility, scalability,
low latency, and robustness to users [119]. Resource sources that were geographically
distant from users can now be nearly and thus serve applications with a critical level of
response. However, considering the vehicular scenario that proves to be quite costly when
depending on infrastructure to support the execution of centralized applications/services,
having the possibility of using the vehicles’ resources for data processing and storage can
reduce latency and cost deployment for critical applications.

2.3 Vehicular Edge Computing and Vehicular Clouds

Vehicles are increasingly intelligent and connected, with considerable energy, processing,
storage, and communication resources. Such available resources can be used in coop-
eration by a group of vehicles and thus create a local cloud to process tasks that were
previously performed in the Cloud or even in the Edge [12, 4, 14]. This grouping of vehi-
cles is known as VC. With this, vehicle resources can be made available for applications
not necessarily part of the vehicular scenario. In summary, the methods used to make
resources available in traditional Cloud Computing can be incorporated into this new
vehicular scenario [100, 144].

In this way, researches present VC with the primary objective of gathering and using
the resources available on board vehicles. These resources encompass processing, stor-
age, and sensing, which can be dynamically collected in groups of vehicles under drivers’
authorization. The cloud, drivers, passengers, and users benefit from efficiently aggre-
gating all the resources around and efficiently delivering them as cloud services to the
network [12, 111, 14].

VC services are complex and relevant, which complement traditional Cloud Computing
services. As defined by some researchers, VC refers to “a group of vehicles that are largely
autonomous and contain computing, communication, sensing, and storage resources that
can be coordinated and dynamically allocated to duly authorized users" [112, 12]. Some
authors differentiate the concepts that encompass the VC depending on how the coordi-
nation of the clouds occurs. For example, there is the Vehicular Cloud Computing (VCC)
concept which, in essence, uses the resources of the traditional Cloud to provide vehicular
services. It behaves like a centralized approach [12, 123]. There is also Vehicular Edge
Computing (VEC), which uses vehicle resources and the traditional Cloud to provide ser-
vices, but has coordination at the network edge or even among the vehicles themselves
[14, 123].

VEC is inspired by Multi-Access Edge Computing (MEC), which emerged with a key
role in enabling mobile users to use computational resources at the cellular network edge,
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thus unburdening traffic intense to the network core [139]. With this, benefits such as
low latency, higher bandwidth, and location-based services are possible for users. In the
vehicular context, applications such as vehicular security applications can use the MEC for
services with strict latency requirements. However, some other applications require large
amounts of data exchanged between vehicles or other entities to perform complex tasks,
such as real-time learning mechanisms for autonomous vehicles or Artificial Intelligence-
oriented applications, such as those expected in 5G and 6G networks [42, 97, 155, 27].
Table 2.1 shows a comparison between VEC and VCC.

Table 2.1: Comparison between Vehicular Edge Computing (VEC) and Vehicular Cloud
Computing (VCC) [12, 123]

Feature VEC VCC

Location At user’s proximity Remote
Latency Low High
Mobility support High Limited
Decision making Local Remote
Communication Real time Constraints in bandwidth
Storage capacity Limited Highly scalable
Processing capacity Medium High
Resource flexibility Dynamic Highly dynamic
Context awareness Yes No
Device heterogeneity Highly supported Limited supported
Autonomous composition Yes No
Network architecture Peer-to-Peer or Client-Server Client-Server
Battery limitation No No
Cost of development Low High

Regarding computational and storage capacities, it is noticeable that the VCC has
more resources than the VEC. Furthermore, mobility is a valuable and inherent part of
the physical VEC resources, whereas VCC resources are commonly located in the fixed
data center. It is also known that VCC does not have limited energy resources due to the
constant supply of energy in the data center. Likewise, the VEC does not have limited
energy resources since a vehicle contains a large capacity battery, and the operating
mechanism incorporated by automakers can recharge it continuously.

Modern vehicles already have powerful computational resources to use sophisticated
applications and services. The Cloud can expand such capabilities by providing unlim-
ited resources, thus increasing access to services. In addition, built-in vehicle features
tend to be underutilized for long periods, such as when vehicles are parked or stuck in
traffic jams. Such situations raise promising opportunities to exploit underutilized com-
puting resources to assemble dynamic clouds autonomously, thus providing even more
computational capacity for various services.

Conceptually, neighboring vehicles can participate in a VC, with some strategy that
contributes to addressing complex issues in real-time, which can lead to a significant evolu-
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tion for transport systems [111]. The vehicular mobility and the environment dynamicity
require sophisticated strategies for managing resources efficiently [103, 13]. VEC is essen-
tial for the design of the robust solutions for the VANETs environment, which includes
support for a wide range of applications and services [12, 65].

xn interface

Remote Server

VC in Region A

VC in Region A

Request

Scheduling

VC in Region B

BS

Vehicle

VEC Controller

optical fiber

Figure 2.2: A traditional VEC system architecture, presenting its main components,
such as vehicles, Base Stations (BSs), Remote Server (RS), Vehicular Clouds (VCs), and
Vehicular Edge Computing (VEC) Controllers.

Figure 2.2 presents an example of a VEC architecture assisted by a 5G network. In
this case, the VCs are formed with the help of the BS deployed in the city. In addition,
network controllers (VEC controller, in this case) are placed in the scenario to help the
decision-making process at the network’s edge. A Remote Server (RS) in the Internet
cloud can be used to store specific authentication information or digital media of users,
for example. Thus, after a VC formation process, users can request resources on the
network, and the controller decides which VC will process the demands of these users.

In the VEC scenario, the use and management of resources can be divided into two
main steps: (i) VC Formation, which aims to group vehicles based on some characteristic,
and with that, grouping the computational resources available in these vehicles; and (ii)
Task Scheduling: whose purpose is to decide in which VC a given application will be
executed, as well as to manage in real-time the resources available in that cloud after the
scheduling process. However, due to the high vehicular mobility and the dynamic nature
of VANETs, some challenges must be overcome. The VC formation process is directly
compromised by vehicular mobility, since the stability and maintenance of these clouds
depend on robust algorithms that mitigate the impact of mobility. Furthermore, if the
VCs formed are not stable, the scheduling process becomes imprecise, since it is essential
to ensure that the processing times (deadlines) of the tasks are respected.

In this sense, as this thesis focuses on using and managing resources present in vehicles
to provide greater computational capacity in the network, it is essential to emphasize that
the solutions presented here operate in the VEC scenario. Although extensive efforts have
been applied to find solutions that deal with the highly dynamic changes of communication
topology in VANETs, challenges persist and are actively present in VEC, which depends
entirely on vehicular communication.

The VEC architecture can be divided into three main levels [123, 89], namely:
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• Cloud Layer: the most important advantages of the cloud tier are data aggregation,
data mining, analytics optimization, storage, batch processing, and complex data
computing, which are beyond the computing power of edge nodes. This layer can
handle extensive applications that do not require low latency in their operations.

• Edge Layer: this layer connects the cloud layer and intelligent vehicles. This
connection is enabled by the communication capabilities inherent in the vehicles.
The aim is to provide low latency, location awareness, caching, and content discovery
and enhance computational power. The edge layer can improve the quality of real-
time services by being close to vehicles.

• Vehicles Layer: This layer contains a group of geographically close vehicles that
share computing and storage resources over the wireless network. It is responsible
for abstracting information from built-in sensors, Global Positioning System (GPS),
cameras, radar, Light Detection and Ranging (LiDAR), and other devices that ve-
hicles may contain. This sensory information can be sent to the other layers and
thus provide input to various services.

2.4 Chapter Conclusions

VANETs represent an essential paradigm for providing applications and services to drivers
and passengers. The advantages of this type of technology are even more evident with
the advancement that the automobile industry has been using in vehicles to make them
increasingly intelligent, connected, and autonomous. Allied with this, Cloud Computing,
together with VANETs, can provide cloud services for vehicular users, such services con-
cern the availability of computational resources for the execution of vehicular applications
that require high processing power and low response latency. In this way, the availability
of vehicular computational resources to bring the processing power closer to the users
originates the paradigm known as VEC. Furthermore, groups of vehicles formed in the
VEC are called VCs. This chapter brought concepts from VANETs and Cloud and Edge
Computing and how the union of these paradigms can benefit the vehicular environment.
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Chapter 3

Related Work

This chapter presents a classification, review, and qualitative literature analysis for each
important process in VEC systems, such as VC formation, task scheduling, and fair-
ness and load balancing. Section 3.1 describes the proposed solutions for the VC for-
mation. Section 3.2 presents the state-of-the-art about task scheduling in VEC systems.
Section 3.2 describes solutions to increase fairness and load balancing levels in vehicle
resource usage. At last, Section 3.4 concludes the chapter.

3.1 Vehicular Cloud Formation

This section presents state-of-the-art research regarding grouping network devices to use
their computational resources for different purposes. However, we analyzed these works
from a perspective for application in VCs formation scenarios, which are usually formed
using traditional clustering concepts in VANETs [26, 6]. In general, VC formation ap-
proaches can be classified into two classes. (i) Infrastructure-based, where the entity that
makes the grouping decision is concentrated in a communication infrastructure, such as
RSU or Cellular BS. This approach allows resources to be better managed, and the infras-
tructure can provide minimal computational resources to service requests even without
vehicles in its coverage. With the advancement of 5G networks, these communication
infrastructures are viable in this vehicular scenario [49, 152]; and (ii) Distributed, where
the grouping decision is made individually by each node that is part of the network. This
approach, specifically for the VCs scenario, makes the resource management process more
challenging and only guarantees minimum computational resources to meet demands in
areas with communication infrastructures. In this sense, we divided the related works into
three perspectives, considering the support provided by the infrastructures, the grouping
strategy considered, and whether the approach considers some mobility information in its
decision process.

For instance, Zhao et al. [157] proposed an algorithm to form mobile device groups con-
sidering social factors, particularly the degree coefficient, to maximize network throughput
among the grouped devices. The algorithm selects leaders and members for each group
based on social attributes and physical factors such as community, connections, and ge-
ographic proximity. While this approach is generic, it can also be applied in vehicular
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environments.
Similarly, Kamakshi et al. [73] introduced an algorithm based on graph modularity

gain and the degree of cohesion between vehicles to form stable vehicle groups. In sum-
mary, the algorithm selects forwarders (i.e., V2V communication hubs) for safety messages
by creating stable communities of vehicles, considering their relative mobility. The au-
thors consider the relative mobility between communities during maintenance, specifically
for community aggregation and separation.

Da Costa et al. [33] introduced a mechanism that considers the VC formation based
on the Density-Based Spatial Clustering of Application with Noise (DBSCAN) clustering
algorithm. In short, DBSCAN identifies groups based on the spatial density of individu-
als. The proposed mechanism centrally obtains the positioning of vehicles and executes
DBSCAN to identify the VCs. Besides, the choice of the Vehicular Cloud Head (VCloud-
Head) in this approach is carried out by calculating the centroid in the spatial distribution
of the VC and identifying the vehicle closest to this centroid.

Peixoto et al. [115] introduced a data clustering framework to reduce traffic informa-
tion at the edge of vehicular networks by exploiting fog computing. The proposed data
clustering framework defines two methods for the reduction of the traffic data stream:
The baseline method, which is an ordinary traffic congestion detection approach, and two
adapted clustering methods for a data stream, namely, the Ordering Points to Identify
the Clustering Structure (OPTICS) and the DBSCAN.

Bute et al. [17] proposed a cluster-based cooperative task offloading scheme for
cellular-vehicle networks. In this case, a clustering of vehicles is achieved by employing
the fuzzy logic algorithm. For cluster formation and VCloudHead selection, VCloudHead
is chosen based on a distributed algorithm. Three metrics are considered to form VCs:
k-connectivity, link reliability, and relative distance. These metrics are to ensure stable
connectivity between nodes for reliable communication. After receiving beacon messages,
each vehicle evaluates its suitability value and each one-hop neighbor in the communica-
tion range. The vehicle with the highest suitability value declares itself the VCloudHead.

Abbasi et al. [2] presented a fuzzy logic-based vehicle weighting model for scheduling
prioritized data in VANETs, called FWDP. FWDP employs RSUs to dominate the fre-
quent topology changes and manage the data propagation. A Fuzzy C-Means Clustering
(FCMC) is used for handling clustered vehicles that compete to utilize the shared chan-
nel. RSUs receive prioritized data from VCloudHeads in the proposed model, wherein
VCloudHeads allocate scheduled service channels to weighted vehicles during an interval.
FWDP is equipped with a Fuzzy Inference System (FIS) for vehicle weighting according
to the velocity and inter-vehicle distance metrics. In addition, RSUs compute the signal
to interference plus noise ratio (SINR) to solve the hidden terminal problem to prevent
radio interference. Also, FWDP uses mobility information to estimate vehicular density
and prioritize the vehicles that should propagate messages.

Zhao et al. [156] proposed an adaptive vehicle clustering approach based on a fuzzy
C-means algorithm to minimize vehicle power consumption. Specifically, the proposed
algorithm dynamically allocates the computing resources of each virtual machine in the
vehicle according to the popularity of different virtualized network functions. The optimal
clustering number to minimize the total energy consumption of vehicles is determined
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using the fuzzy C-means algorithm, and the VCloudHead is selected based on a vehicle
moving direction, weighted mobility, and entropy.

Hagenauer et al. [58] presented a map-based approach to VC formation that selects the
most central vehicle (close to the centroid) in the region covered by an RSU. The formed
clouds can provide services in their vicinity, and together they form larger VCs, allowing
for more complex services and covering entire cities. This work shows that an efficient
VC formation enables vehicular applications to use aggregated computational resources
efficiently. In this approach, the VC formation process is limited to intersections in urban
environments and the VCs size is limited to the communication radius of the selected
VCloudHead. Also, the primary metric to determine VCloudHead is the vehicle position
about the intersection centroid.

Wang et al. [147] proposed a network representation learning to achieve accurate ve-
hicle trajectory clustering. Specifically, the authors dynamically construct the K-Nearest
Neighbor (KNN)-based vehicle groups. Then they discover the low-dimensional represen-
tations of vehicles by performing dynamic network representation learning on the con-
structed network. Finally, vehicle trajectories are clustered using Machine Learning (ML)
methods using the learned vehicle vectors. Magaia et al. [95] introduced a vehicular clus-
tering algorithm at the edge of the network and an efficient message routing approach,
which is known as Group’n Route (GnR). Both mechanisms resort to machine learning
and graph metrics reflecting the nodes’ social relationships. The performance evaluation
reveals that the clustering algorithm yields stable results with varying road scenarios.

Table 3.1 summarizes the main characteristics of reviewed studies regarding grouping
strategy, the assistance provided by communication infrastructures, and the use of ve-
hicular mobility information in the decision-making phase. Based on our state-of-the-art
analysis, we conclude that it is essential to consider predicted mobility information in
the decision process. This is because mobility prediction provides a temporal layer for
spatial data, making it possible further to explore the social relationships between vehi-
cles in the network. In addition, considering communication infrastructures is essential
to increase the reliability of control rules. In summary, our work can complement the
others since it uses the vehicles’ dwell time in VCs for decision-making. This knowledge
is essential to improve many processes, such as assisting in resource management, effi-
cient data dissemination, cooperative data processing and perception, and location-based
content aggregation. Compared to our previous work [32], called NEMESIS, the main
improvement of this work is the inclusion of the distance factor in the decision-making
equation. In this case, our new approach considers the balance between decision metrics
(distance and dwell time), effectively reducing the likelihood of disconnections between
the leading vehicle and the RSU. Additionally, this mechanism operates in city intersec-
tions, increasing the connection probability among VC members and enhancing resource
management capacity [113].
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Table 3.1: Summary of related work referring to the Vehicular Cloud (VC) formation,
highlighting their characteristics and limitations.

Work Grouping strategy Infrastructure-based Mobility info.

Zhao et al. [157] Degree centrality ✓
Hagenauer et al. [58] Centroid ✓
Da Costa et al. [33] DBSCAN ✓
Peixoto et al. [115] OPTICS & DBSCAN ✓
Bute et al. [17] Fuzzy
Kamakshi et al. [73] Centrality metrics Relative mobility
Abbasi et al. [2] Fuzzy C-Means ✓ Vehicular density
Zhao et al. [156] Fuzzy C-Means ✓ Moving direction
Wang et al. [147] KNN + Machine Learning ✓ Trajectory
Magaia et al. [95] Social + Machine Learning ✓ Social contacts
Da Costa et al. [32] Dwell time ✓ Prediction

3.2 Task Scheduling

This section presents state-of-the-art research regarding task scheduling in VCs. In gen-
eral, scheduling approaches can be classified into three perspectives. (i) Centralized,
where an entity has a scenario holistic view and makes more accurate decisions. This
approach has the advantage of an environment global view, but maintaining this knowl-
edge is a challenge for system scalability; (ii) Decentralized, which has different agents
that make decisions based on local knowledge. This approach does not need to maintain
global knowledge, but the accuracy of decisions is compromised in some cases; and (iii)
Hybrid, which combines the advantages of two previous techniques to increase system
efficiency [84]. Observing the advantages of each scheduling approach, we consider only
the Centralized and Hybrid approaches due to the essential role the 5G network can play
in these specific scenarios.

Pereira et al. [117] proposed FORESAM, a policy for scheduling tasks in VCs based
on the fog computing paradigm for urban environments. Specifically, vehicles cooperate
with the set of BSs to create a pool of resources for vehicular services. FORESAM decides
whether resources are available based on Analytic Hierarchy Process (AHP) mathematical
method. However, FORESAM employs greedy decision-making, where in case a task does
not fit into the VC, it is discarded, impacting the overall system efficiency.

Some works consider optimization algorithms for decision-making. Da Costa et al. [33]
introduced CRATOS, a combinatorial optimization-based mechanism for task scheduling
in VCs. CRATOS considers the arrival of tasks in real-time and regardless of each other
following a Poisson process. The VEC controller located at a higher level in the network
receives the resource requests (which are the tasks) and schedules them in the available
VCs. 0/1 Knapsack Problem is used to schedule tasks optimally given the contextual
configuration (tasks’ input size and VC’s available computational resources). However,
CRATOS does not consider tasks with deadlines higher than 1s in its decision process.
Also, the user defines how much it will cost to process his task. Hence, CRATOS would
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not fit into an actual application, as the monetary cost model used by cloud providers is
different.

Dai et al. [41] presented a probabilistic algorithm for cooperative task scheduling
in VCs. The authors formulate Cooperative Computing Offloading (CCO) problem by
modeling the procedure for uploading, migrating, and scheduling tasks based on queuing
theory to minimize the delay in the system. The BS makes online scheduling based on
the calculated probability provided by a probabilistic offloading algorithm. Three aspects
are considered for computing the offloading probability: the time that vehicles will stay in
BS’s coverage range; the density of vehicles; and resources available in the BS. However,
this computation is offline, which means it is executed on a high-performance server in
the Internet cloud. The probability that the BS will meet demand is computed before the
process of task arrival, which can degrade the system’s performance in a highly dynamic
environment. Finally, VCs considers only the resources available in the BSs.

Luo et al. [94] presented a detailed analysis of the delay and cost of task offloading
for VCs. The authors first establish an offloading framework with communication and
computation for VC, considering tasks with different requirements. In this sense, a multi-
objective optimization problem is formulated to joint minimization the delay and the
monetary cost. A Particle Swarm Optimization (PSO)-based computation offloading
(PSOCO) algorithm is proposed to obtain the Pareto-optimal solutions. However, due to
its bio-inspired approach, its convergence time can impact the algorithm’s performance.

Some works use queuing theory to model the vehicular scenario. Hattab et al. [60]
proposed a polynomial time algorithm for task scheduling in VCs with different resources.
First, the algorithm classifies tasks according to the completion and wait times. After-
ward, it selects a subset of tasks with the lowest proportion and then solves a sequence of
Linear Programs. They formulate the bottleneck assignment problem, where the goal is to
minimize the completion time of the scheduled tasks in the available VCs. However, this
work does not consider the vehicle mobility for VC formation, i.e., VCs are stationary,
and the proposed algorithm considers only one VC.

Some approaches use ML techniques for the scheduling decision process. Kazmi et
al. [77] proposed a task scheduling mechanism for mobile vehicular networks using a
Deep Reinforcement Learning (DRL)-based approach. The approach considers electric
vehicles in task processing. The focus is to make energy consumption more efficient.
Mobility information considers the relative mobility and kinematic equations to estimate
the communication phase between two vehicles. However, an evaluation comparing the
solution with state-of-the-art is still necessary. Furthermore, the BS does not cooperate
in task processing, decreasing system efficiency.

Gao et al. [53] present a solution for task scheduling that aims to minimize service
delay and energy consumption. The authors use a Deep Q-Network (DQN) approach for
scheduling decision-making and a Gradient Descent (GD) method for Central Processing
Unit (CPU) frequency allocation. However, the work needs to discuss the solution con-
vergence time, which depending on the scenario, can make it unfeasible for more dynamic
environments.

Chen and Xu [19] presented a Reinforcement Learning (RL)-based algorithm for task
scheduling in VC, called DATE-V, which provides resources for scheduling tasks with
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deadline constraints in the VCs. DATE-V is based on a contextual and combinatorial
Multi-Armed Bandit (MAB) learning framework. The algorithm uses vehicle contextual
data (i.e., speed, location, and computational resources available) to infer the probability
of completing a task replication under random vehicles. DATE-V also replicates the
task received in the BS and sends such replications to different vehicles to ensure service
attendance and increase its success rate. However, these replications potentially lead to
a costly solution, given that defining the number of replications is challenging.

Liu et al. [90] proposed a vehicle-assisted task scheduling approach for mobile users,
considering delay constraints. The authors formulate an optimization problem to max-
imize the long-term usefulness of VC’s resources. Considering stochastic vehicle traffic,
dynamic computation requests, and time-varying communication conditions, the prob-
lem is later formulated as a Semi-Markov Decision Process (SMDP). Two reinforcement
learning methods are proposed to obtain the optimal computation offloading and VC’s
resource allocation, namely (i) Q-learning based and (ii) Deep Reinforcement Learning
(DRL) methods. However, given the nature of DRL approaches, it is necessary to train
the model in advance. Thus, the solution depends on the offline phase for its execution,
which can negatively impact highly dynamic scenarios.

Some works consider mobility prediction to estimate vehicle positions and ensure re-
liability in the task scheduling process. For example, Misra and Bera [107] proposed a
mobility-aware task scheduling scheme named Soft-VAN, which aims to minimize task
computation delay in a software-defined vehicular network. Soft-VAN consists of two
phases, fog node selection and task scheduling. An Integer Linear Program (ILP) is
solved in the first phase to get the optimal number of fog nodes required for a given net-
work. In the second phase, the authors formulate an optimization problem to minimize
the delay in task computation and consider the vehicle’s mobility and the parameters
associated with the scheduling decisions. However, the algorithm depends on an offline
phase to identify fog nodes to assist the delivery process of the tasks performed. Also,
they do not consider the vehicles’ dynamics to make the processing decisions for the task,
only to send the final result.

Wu et al. [151] investigate the task scheduling and resource allocation optimization
problem by considering the vehicular mobility effect in the VEC environment. Specifi-
cally, the authors formulate the joint optimization problem from a Min-Max perspective
to reduce the overall task latency. Then they decompose the non-convex problem into
two sub-problems, one-to-one matching and bandwidth resource allocation. Also, consid-
ering a vehicle’s relatively stable moving patterns in a short period, the authors further
introduce mobility prediction to design a mobility prediction-based scheme to obtain a
better solution. However, the mobility model is unrealistic since vehicles need constant
acceleration during the task scheduling.

Table 3.2 summarizes the main characteristics of reviewed studies considering system
design, the entities forming the VCs, the approach used in the task scheduling process,
and vehicular mobility information. Based on the state-of-the-art analysis, we conclude
that centralized approaches allow the constructed knowledge to be global and more ac-
curate. However, the network’s overload levels can be high and overload the centralized
entities, raising the monetary costs of using computational resources [60, 33, 107, 151]. In
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Table 3.2: Summary of related work referring task scheduling, highlighting their charac-
teristics and limitations.

Work
Characteristics

System design VC’s entities Scheduling strategy Mobility info.

Hattab et al. [60] Centralized Vehicles Queueing theory
Da Costa et al. [33] Centralized Vehicles Optimization
Pereira et al. [117] Hybrid Vehicles/BS AHP
Dai et al. [41] Hybrid BS Optimization
Chen and Xu [19] Hybrid Vehicles RL
Liu et al. [90] Hybrid Vehicles/BS DRL
Luo et al. [94] Hybrid Vehicles/BS PSO
Gao et al. [53] Hybrid Vehicles/BS DQN
Misra and Bera [107] Centralized Vehicles ILP ✓
Wu et al. [151] Centralized Vehicles/BS Optimization ✓
Kazmi et al. [77] Hybrid Vehicles/BS DRL ✓

another direction, some works consider hybrid architectures, enabling to build on regional
knowledge without burdening a central entity and the network’s core with high message
exchange [117, 41, 19, 90, 94]. A VEC architecture allows the cooperation of computa-
tional resources among vehicles and BSs for VCs creation, enabling resources to be always
available. For instance, considering only vehicles, the approaches are limited to regions
with high vehicle flows to maintain the high resource availability. On the other hand,
considering BS as an entity that composes the VCs enables more effective management
both in forming VCs and using resources, making the processes more stable and reliable
[117, 90, 94, 151].

Regarding the scheduling approach, it is essential to consider decision-making tech-
niques with low complexity to deal with the real-time requirements of different classes of
applications explicitly defined by their deadlines. In this sense, in computational complex-
ity order, some studies consider simple computing algorithms [60, 117], others consider
optimization techniques [33, 41, 94, 107, 151], and some studies consider machine learning
algorithms [19, 90, 77, 53]. In this sense, the techniques used should be less computa-
tionally complex, and thus their decision time does not negatively impact the system’s
overall efficiency. Furthermore, creating knowledge about the dynamics of computational
resources through vehicular mobility is essential to estimate future resource availability.
In this sense, approaches can make better decisions, relating task requirements, such as
deadlines, and computational resources available in the future, reducing the task schedul-
ing interruptions and the monetary cost employed by this process. However, only a
few studies consider vehicular mobility information in their decision-making processes
[107, 151, 77].
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3.3 Fairness and Load Balancing

Numerous studies have created diverse strategies to optimize task scheduling in VEC
systems. Also, some of these strategies try to balance the scheduling load in the VCs. For
instance, Hattab et al. [60] introduced an optimized algorithm for scheduling tasks in VCs
with varied resources, which mainly uses the First-Come, First-Served (FCFS) standard
from the literature. The algorithm classifies tasks by completion-to-waiting time ratio,
identifies those with the lowest ratio, and uses Linear Programs to solve them. It aims to
minimize task completion time within VC’s resources, assuming a static VC and focusing
solely on a single VC. In this case, load balancing is trivial, as there is only one VC for
decision-making.

Some works consider Multi-Criteria Decision Making (MCDM) methods for selecting
the VC to perform the scheduling process. These MCDM methods tend to balance the
selected options to insert a load balance during the decision process. Aligning with this
approach, Mishra et al. [106] introduced two AHP-based resource allocation policies,
named SECA and AHP-EV. Resource allocation can also be defined as task scheduling,
depending on the scenario. The proposed schemes consider the network load and compute
load during decision-making, aiming to minimize each task’s delay. These policies differ in
assigning weights to each criterion, but both have similar results. AHP-EV employs pre-
set weights for computing power and network, whereas the SECA dynamically determines
criteria weights.

Similarly, Pereira et al. [117] devised a mechanism known as FORESAM, which utilizes
the AHP to select the optimal set of tasks for scheduling within VCs. FORESAM aims
to maximize vehicular resource use, considering all task requirements during decision-
making. Despite this, FORESAM employs only one VEC controller and fails to specify
its placement within the VANET. Depending on the controller’s position, requests may
still need to traverse the network core, potentially leading to congestion and subsequent
service delays.

Other works utilize multi-objective optimization methods for the task selection process
that will be scheduled. Da Costa et al. [37] presented a task scheduling mechanism for
VCs based on Pareto optimality, named EFESTO. EFESTO employs vehicle mobility
information to estimate the resources available in each VC, thereby enabling more precise
decision-making. Moreover, it uses Pareto optimality to select the optimal subset of tasks
for joint minimization of deadline and processing time, which minimizes the monetary
cost associated with resource usage. However, EFESTO prioritizes the VCs with more
available resources without considering possible overloads that this continuous selection
can cause.

Similarly, Luo et al. [94] evaluated delay and cost implications associated with task
scheduling in VCs. The study established a scheduling framework that accommodates
communication and computation within VCs, considering tasks with varied requirements.
Consequently, a multi-objective problem was designed to minimize both delay and cost. A
Particle Swarm Optimization-based scheduling algorithm was suggested to derive Pareto-
optimal solutions. However, due to the bio-inspired nature of the approach, the conver-
gence time could impact the solution’s overall performance. Additionally, the authors did
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not factor in vehicular mobility as a prerequisite in the scheduling process.
Ribeiro et al. [126] introduced a metaheuristic approach that models VCs as a coali-

tion. In game theory, a coalition refers to a group of players who agree to cooperate by
combining their strategies to enhance their joint payoff. In this context, the authors pro-
pose a coalition game to maximize resource utilization while dynamically balancing the
load among the VCs. Firstly, the mechanism establishes a strategy based on the Shapley
value to determine the sequence in which tasks are scheduled. After that, the mechanism
uses a queue to schedule tasks within VCs based on values calculated. Nonetheless, the
authors overlook the contextual factors in the scheduling decision process. They do not
consider the implications of vehicular mobility and task deadline constraints.

Some works consider combinatorial optimization problems for task scheduling and,
given the nature of the problems, load balancing is inherently applied. Wang et al. [145]
proposed a task offloading algorithm for VCs, which builds on the Multi-dimensional
Multiple Knapsack Problem (MMKP) concepts. It considers that each user will pay for
computing tasks according to task size to maximize the total profits from computing
offload from an infrastructure perspective. A modified Branch-and-Bound algorithm is
proposed to obtain the ideal solution with a Greedy heuristic method to get approximate
performance with lower computational overhead. However, these algorithms are compu-
tationally costly because they compute the optimal solution for each knapsack in one step
and only then use this information to allocate tasks in different clouds.

Nabi et al. [108] presented a task scheduling scheme for VCs that uses Knapsack
Problem concepts. This scheme solves the scheduling for a single task in polynomial time
and provides a greedy solution for the same purpose. Besides, they extend the algorithm
to solve the allocation problem for n tasks with lower bounds and Fractional Knapsack
Problem. However, this scheme considers an offline environment in which the problem
instance is entirely available and known before the simulation begins. In this sense, it
requires prior knowledge of the tasks to be allocated, not operating satisfactorily in a
real-time decision-making environment.

3.4 Chapter Conclusions

This chapter described literature solutions for the VC formation, task scheduling, and
fairness and load balancing in VEC systems, highlighting the advantages and limitations
of each solution. Also, a classification and a qualitative comparison were proposed. Based
on the state-of-the-art analysis, some conclusions are taken, namely: (i) a VC formation
solution needs to consider predicted mobility information in its decision process. This is
because mobility prediction provides a temporal layer for spatial data, making it possible
further to explore the social relationships between vehicles in the network. In addition,
considering communication infrastructures is essential to increase the reliability of con-
trol rules; (ii) Scheduling tasks with high computational power requirements, such as
traffic image processing or real-time learning, is a challenging issue in a highly dynamic
vehicular environment [135]. In other words, the task scheduling mechanisms must make
accurate decisions considering all the tasks’ computational requirements, regardless of the
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variability of these requirements in different classes of applications. Besides, scheduling
mechanisms must always minimize costs for end-users; and (iii) the approaches prioritize
scheduling results, even if fairness and load balancing do not present high levels during the
process of using computational resources. In this way, it is essential to consider load bal-
ancing during the task scheduling decision process to increase fairness in using resources
and not overload specific regions in the city, increasing its maintenance costs.

In this way, the next chapters will describe the solutions proposed to address these
limitations. Chapter 4 presents an VC formation mechanism that uses mobility prediction
to increase the lifetime of VC without overloading the network with management mes-
sages. Chapter 5 presents a task scheduling mechanism that uses mobility prediction to
estimate the available resources in each VC using an RNN architecture. At last, Chapter 6
presents a strategy to increase fairness and load balancing in the use of vehicle resources
without negatively impacting the system’s overall efficiency.
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Chapter 4

Vehicular Cloud Formation using
Mobility Prediction

VEC considers a set of VCs to allow vehicular users to request resources to meet appli-
cation demands [114, 22]. Specifically, VC groups up computational resources, such as
processing units and storage capacity, available in a set of vehicles (i.e., either moving or
parked vehicles) and infrastructure (i.e., RSUs, 5G BSs, and RS in the Internet cloud)
nodes to provide cloud services [58]. In other words, some vehicles increase their com-
puting capacity by using VEC resources, while others lend their available resources to
VC. Hence, VEC avoids the underutilization of vehicular computing resources by using
idle resources to be managed and utilized by other vehicles. In this context, there is a
need to rely on VC formation mechanisms for grouping these vehicles in VCs, where VC
formation occurs by creating groups with a set of vehicles in a geographic region sharing
the same preferences, such as direction, trajectory, path similarity, etc [11, 102].

The VC formation mechanisms rely on the communication infrastructures to assist
the VCs formation process [17]. In this sense, vehicles under infrastructure coverage are
considered members of this VC. This is because, in a macroscopic view, these VCs can
be inter-communicable through infrastructures deployed in cities, allowing cooperation
between them [14]. In this work, we consider moving vehicles in specific geographic regions
in the city, e.g., intersections, which are covered by RSUs. Specifically, intersections are
an appropriate location for setting up VCs as vehicles traveling on multiple road segments
can meet at one place [113]. Unlike distributed approaches for VC formation, we consider
that vehicles do not have autonomy in defining the roles of VCloudHead or Vehicular
Cloud Member (VCloudMember). In this case, the RSU performs the required inferences
for these definitions and informs vehicles. This definition is essential to take advantage of
the communication infrastructures naturally available in cities, with the broad expansion
of 5G networks [85], and considerably reduce the number of maintenance messages that
fully-distributed approaches need in their decision processes.

However, as we discussed in Chapter 2, high vehicular mobility is the main challenge
for proposing efficient VC formation mechanisms since vehicle mobility causes several
variations in network topology and intermittent connections [31]. For example, it may
happen that the connection between the client vehicle and the vehicles processing in
the VC does not last until the scheduled tasks finish their execution, which generates
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rescheduling processes and increases the cost of using resources. Hence, vehicular mo-
bility impacts the system efficiency by fluctuating the number of available resources in
the VC, causing the loss of task processing results and impacting the number of tasks
attended/scheduled [124]. In this context, existing works have considered mobility infor-
mation in their decision-making processes to mitigate the impact of vehicular mobility
[93, 95, 156, 147]. Although mobility is considered in such works, they do not involve
mobility in their optimization problems, and mobility is a trigger condition for other pro-
cesses [151]. Hence, providing a mobility-aware VC formation mechanism to select the
most stable vehicles to lead each VC and make managing more stable and reliable is still
an open issue [88].

In this context, this chapter describes a mobility-aware mechanism called PREDATOR
(mobility PREDiction-based Approach to enhance vehicular cloud formaTiOn pRocess)
that enhances the VC formation process. The mechanism leverages the vehicular mobility
predictions provided by RSUs to select the most stable vehicles within the RSU coverage
area to lead the VC, thereby increasing the VC’s lifetime. Vehicle stability is measured by
the dwell time, representing the duration a vehicle spends within the RSU coverage area
[113]. To achieve this, RSUs receive contextual information from vehicles through the
natural beacon exchange in VANET. This information is aggregated at the city intersec-
tions at certain intervals, and the RSU executes the VC formation process. The number
of VCs formed is proportional to the number of RSUs in the scenario. Additionally, a
Network Controller at a higher level in the network can oversee these VCs and manage
their aggregated resources. Simulation results demonstrate the superior performance of
PREDATOR compared to other VC formation mechanisms. The results highlight the
benefits of PREDATOR, including a 42.15% longer VC lifetime, 45.81% lower number of
VC leader changes, 48.51% lower number of messages exchanged on the network, 43.55%
lower number of packet collisions, and the ability to serve 24.68% more requests for ve-
hicular computational resources.

4.1 PREDATOR

As discussed above, vehicular mobility directly impacts the approaches to forming VCs due
to the dynamic nature of moving vehicles. VC formation involves grouping and utilizing
computational resources available in moving and parked vehicles to provide services and
applications to users. However, vehicular mobility introduces significant challenges, such
as variations in resource connectivity and availability and the possibility of disruptions in
communication between vehicles. This makes the VC formation process more complex.

A solution aware of vehicular mobility can overcome the challenges of high mobility
for VC formation. This approach should take real-time information about the location,
speed, and availability of vehicles into account to perform efficient grouping strategies
and task scheduling. Additionally, after the VCs are formed, adaptive algorithms and
load-balancing strategies can be implemented to optimize the task scheduling among
vehicles grouped in these VCs, ensuring that user demands are effectively met even in
highly dynamic environments. The formation solution must rapidly adapt to changes
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in mobility conditions, dynamically and intelligently allocating resources to enhance the
performance and reliability of the VC. Thus, vehicular mobility prediction information
can be leveraged as an advantage for forming more robust and resilient VCs.

With that in mind, and aiming to overcome the challenges posed by vehicular mobility,
this section describes the details of PREDATOR, where we consider a scenario composed
of multiple VCs assisted by RSUs. PREDATOR considers a mobility prediction model
for selecting the most stable vehicles to coordinate each VC. We present some essential
assumptions, detail the system architecture used, and define the problem. Finally, we
present the PREDATOR operation with a description of the algorithms that compose it.

Assumptions

The following assumptions are made for PREDATOR to work properly.

• Each vehicle can communicate with other devices through V2X communication.

• Each vehicle has limited computational resources, such as processing power and
storage capacity, that can be shared with other interested entities.

• Every vehicle under RSU coverage participates in the VC formation process. That
is, we do not consider selfish vehicles. Also, all vehicles are ready to offer their
computing power and storage capacity to cloud services.

• Each vehicle is aware of its real-time location through the global navigation satellite
system, such as GPS.

• A VC starts when an RSU selects a new VCloudHead, and this VCloudHead receives
the warning message from an RSU.

Network and System Model

We consider a scenario composed of x vehicles, where each vehicle ui ∈ U has a unique
individual identification (i ∈ [1, x]) and is equipped with an IEEE 802.11p compliant radio
transceiver, which enables V2X communication. Also, we consider k RSUs deployed in
some intersections in the city. Intersections are appropriate for setting up VCs as vehicles
traveling on multiple road segments can meet at one place [113]. Vehicles periodically send
beacon messages on the network, and thus an RSU collects this information in real-time to
build the knowledge necessary for its decision-making. It is important to highlight that
Information such as position, speed, direction, and computational resources are added
to the beacon message. Besides, we denote each VC as vj ∈ V = {v1, . . . , vm}, which
consists of a subset of vehicles V ⊂ U capable of sharing computational resources, such
as processing power and storage capacity. An RSU assists a VC directly, so VCs’ number
equals the number of RSUs.

In this scenario, vehicles can take on two roles. The first role is VCloudHead, repre-
senting the vehicle elected as the leader of VC by an RSU. The second role is VCloud-
Member, the vehicles that will share their computing resources on the network through
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Figure 4.1: System architecture (VCH: Vehicular Cloud Head (VCloudHead); VCM: Ve-
hicular Cloud Member (VCloudMember).

a VC. Therefore, when a vehicle is associated with an RSU, it automatically becomes
part of the VC assisted by that RSU. The primary function of an RSU is to select the
vehicle leading this VC. Considering the communication range of RSUs is greater than
that of vehicles, the lead vehicle can be n hops away from the other VC members. After
the RSU selects and informs the VCloudHead of this VC, this vehicle notifies the other
VCloudMembers through broadcast messages.

Finally, after an RSU selects its local VCloudHead, it provides this information to a
network controller. The controller has a connection with all the RSUs, having a global
view of the network and all VCs. In this case, the controller does not actuate directly in
the VC formation process. It is responsible only for information aggregation sent by RSUs
after ending the VC formation process. So, VANET applications that need computational
resources can request these resources on the network, and the controller decides which
VC runs the tasks of these applications [33].

Figure 4.1 presents the system architecture. As in a modern scenario, some RSUs
are deployed in the city. Each RSU is responsible for covering a specific area, which in
this case is a road intersection. In this way, vehicles in the intersection are covered by
the RSU, which aggregates and maintains knowledge of how many vehicles are under
their coverage. Each RSU can also apply algorithms to predict vehicular mobility and
estimate vehicles’ dwell-time under its coverage, thus choosing the most stable vehicle to
lead this VC (VCloudHead). Besides, it is considered a scenario where the RSU has a
higher communication range than vehicles. This way, V2V communication within the VC
can occur over more than one hop.

In summary, PREDATOR considers two phases in the VC formation process, namely
communication and information. The communication phase receives and aggregates con-
textual information from neighboring vehicles. At this phase, the RSU maintains a neigh-
borhood structure with all vehicles in its coverage and manages them based on the received
signaling messages (beacons). Each beacon message contains the vehicle’s information,
such as position, speed, direction, and route. The information phase is responsible for
informing the new VCloudHead about its role in the network. In this way, the RSU sends
a message containing the VC identification, the VCloudHead identification, and the num-
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ber of resources available in that VC. After that, the VCloudHead informs its neighboring
vehicles, which now become VCloudMembers, and those VCloudMembers relay this warn-
ing message. With each message retransmission, the number of hops is incremented so
that the receiving knows its distance to the VCloudHead.

4.2 Problem Definition

In essence, mobility prediction algorithms estimate a given vehicle’s position from current
and/or past information. With the forecast information, it is possible to know if, in a
future moment, the vehicle will be part of a specific VC. It is essential to treat mobility
as a time series, where each measurement constitutes an input provided to the predictor
engine to adjust the prediction model [28, 140]. Also, the forecast granularity can be
defined based on the VC formation intervals.

The vehicular mobility pattern makes it possible to model a mathematical system to
predict the future geographic positions of nodes [7]. Thus, consider Pu(t) = (Xu(t), Yu(t))

being the vehicle’s position at the current time t and Pu(t+1) = (Xu(t+1), Yu(t+1)) the
vehicle’s position at time t+1. As mentioned, geographic position data can be consulted
through digital maps and GPS. Therefore, when vehicles associate with an RSU and
provide information, such as current location, speed, direction, and available resources,
the RSU can aggregate this information and create the VC for location-based services.
However, an RSU maintains a macroscopic view of the VC it manages.

Building decision-making closer to these vehicular resources is necessary to guaran-
tee real-time requests’ fulfillment. In this way, the RSU selects the most stable vehicle
(with higher dwell time) to lead the VC, and this vehicle is called VCloudHead. How-
ever, this VCloudHead definition is one of the critical points in the VC formation process.
This VCloudHead will receive the rules from the controller and manage the task schedul-
ing/resource allocation among the VCloudMembers. The system’s overall efficiency can
be degraded depending on the selection criteria. The high number of VCloudHead changes
leads to an increased number of warning messages in the network and, consequently, a
high number of packet collisions. In addition to degrading the efficiency of the VEC
system, it will flood the network with unnecessary transmissions.

Based on the vehicle’s predicted positions Pu(t+n), considering a T time window,
PREDATOR can check if each position p ∈ Pu(t+n) is under the coverage of a given
RSU. As the prediction returns the positions for a given time window T , the vehicle cov-
erage time is obtained by incrementing it by a 1-time unit if and only if the position is
under the coverage of an RSU. In short, an RSU checks its distance to each predicted
position and computes a unit of time for coverage if the result is less than or equal to
its communication range. It is important to note that PREDATOR can work with any
model for mobility prediction existing in the literature, as long as it returns good predic-
tion results. Yet, an RSU maintains a neighborhood structure to store information about
vehicles in its coverage. An RSU checks if this vehicle is already in this structure with
each beacon message received. Otherwise, the vehicle is added, along with information
present in the beacon.
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After aggregating vehicle information, the RSU decides who will be the VCloudHead
of its VC, applying the Equation (4.1) for each vehicle. The calculation is subtracted
from 1 to keep it in the range [0, 1]. PREDATOR selects the vehicle with a maximum Su

in each VC.
Sui

= 1−
(
α× Ā+ β × B̄

)
(4.1)

where α and β represent weights to define the importance of the metrics (Ā and B̄) in the
equation. That is, if α = 0.8 and β = 0.2, it means that portion Ā has greater relevance
than portion B̄. The portion Ā represents the distance between the vehicle and the RSU,
as shown in Equation (4.2). In this case, the vehicle closest to the RSU will be prioritized
to guarantee greater stability in the connection. Rmax represents the RSU’s estimated
communication range and dist is the distance from the vehicle ui to the RSU.

Ā =

(
dist

Rmax

)
(4.2)

On the other hand, portion B̄ of the Equation (4.1) defines how the vehicle’s dwell time
in the RSU’s coverage is considered. In this case, the vehicle with the longest dwell time
will be prioritized, hence the division between 1 and DwellT ime shown in Equation (4.3).
DwellT ime is the dwell time calculated by checking the predicted positions.

B̄ =

(
1

DwellT ime

)
(4.3)

To illustrate the calculation of Equation (4.1), imagine that vehicles u1 and u2 are in
the RSU’s coverage. The RSU has a Rmax = 250m. After the beacon exchange and the
prediction process, RSU knows that vehicle u1 has dist = 50m and DwellT ime = 10s and
the vehicle u2 has dist = 100m and DwellT ime = 12s. Also, parameters α and β are set
to 0.5. In other words, both are equally important in this example.

Applying the equation, we have for vehicle u1:

Su1 = 1−
(
0.5×

(
50

250

)
+ 0.5×

(
1

10

))
= 1− (0.5× 0.2 + 0.5× 0.1)

= 1− (0.1 + 0.05)

= 1− (0.15)

= 0.85
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Also, we have for vehicle u2:

Su2 = 1−
(
0.5×

(
100

250

)
+ 0.5×

(
1

12

))
= 1− (0.5× 0.4 + 0.5× 0.084)

= 1− (0.2 + 0.042)

= 1− (0.242)

= 0.758

Therefore, RSU selects vehicle u1 to lead its VC because it has a higher S value. This
means that even the vehicle having a lower DwellT ime, the possibility of an intermittent
connection between the lead vehicle and the RSU is minimized, also reducing the need
for control messages on the network.

Figure 4.2 presents a visual example with more details of the proposal. The goal is
to know the vehicles’ dwell time under the RSU coverage and, consequently, its dwell
time in the VC. In this example, the vehicle remains 25 s in the RSU of Intersection A.
As some prediction methods require a base of past information to make future estimates
and vehicles transmit beacons with a frequency of 1Hz, each RSU stores the mobility
information of all vehicles in its coverage to build a dataset for the prediction method.
That is, if the prediction is performed at the instant t = 15 with a time window of 10 s,
the information for building the database will range from t = 0 to t = 15 and, thus, it
will be identified that this vehicle will no longer be part of the VC of Intersection A at
the instant t = 25. The RSU only has local knowledge of its coverage. However, the
controller can aggregate the local knowledge of each RSU and build its global knowledge.
In this VC formation stage, the controller has no role other than to keep the information
of each RSU for eventual resource orchestrations.

t = 5

t = 0

t = 10

Intersection B

Trajectory Prediction

Intersection A

t = 15

t = 20

t = 30

t = 25

t = 35

Figure 4.2: PREDATOR’s microscopic vision.

In this way, Algorithm 1 shows a pseudocode of PREDATOR. The set of vehicles
Nk ⊆ U and the time window T for the forecast are provided to PREDATOR. Initially,
the algorithm checks that the set Nk is not empty, which means some vehicles are in
the RSU coverage. If Nk is empty, the resources of this VC are indicated as 0, and
PREDATOR informs the controller about this information (Line 19). Otherwise, each
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vehicle is verified and its shared resources are aggregated for the VC (Line 7). The
predicted positions are added to a temporary set predPositions that contains the vehicle
identification and the list of estimated positions. In this step, we consider the ARIMA
model with the vehicle’s past positions dataset and time window T , which indicates how
many time units the model will try to predict (Line 8). As mentioned earlier, the distance
between the vehicle and the RSU is crucial in decision-making. In this way, this distance
is calculated and stored (Line 9). All predicted positions are verified, and if one of these
positions is within RSU coverage, a dwell time in the VC is incremented in a 1-time unit
(Lines 11 and 13). With the distance dist and dwell time DwellT ime calculated, the
Equation (4.1) is applied, and the vehicle score is stored in a control list S (Lines 14 and
15). After all checks, PREDATOR selects the vehicle with the highest score to become
VCloudHead of the respective RSU k (Line 16). Finally, with the VCloudHead identified,
the RSU sends the message on the network and informs the controller about the created
VC (Lines 17 and 18).

Algorithm 1: PREDATOR mechanism overview
Input: vehicles set Nk, time window T

1 S ← ∅
2 rsu← Roadside Unit (RSU) k’s identifier
3 resource← 0
4 V CloudHead← NULL
5 if Nk ̸= ∅ then
6 foreach u ∈ Nk do
7 resource← resource+ u.resource
8 predPositions← ARIMA(u.dataset, T )

▷ Current distance between u and rsu

9 dist← distance(u.pos, rsu.pos)
10 DwellT ime← 0
11 foreach p ∈ predPositions do
12 if distance(p, rsu.pos) ≤ rsu.Rmax then
13 DwellT ime← DwellT ime+ 1

▷ Use DwellT ime and dist in this point
14 u.score← Equation (4.1)

▷ Store the vehicle’s score
15 S.append(u.score)

16 V CloudHead← max{S}
17 SendBroadcastMsg(rsu, V CloudHead)
18 SendStatusMsg(rsu, V CloudHead, resource)

19 else
20 SendStatusMsg(rsu, V CloudHead, resource)

On the other hand, the Algorithm 2 presents the process when the VCloudHead re-
ceives the RSU warning message. In our system, vehicles can assume three states: (i)
Undefined (UNDEF), which means undefined state; (ii) VCloudMember, which repre-
sents VC’s member vehicles; and (iii) VCloudHead, which represents the leader of the
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VC. Before any process, all vehicles have been set to UNDEF. Therefore, when receiv-
ing a broadcast message from the RSU, the vehicle checks its current status, and if it is
UNDEF, it means that the vehicle is not yet part of any VC (Line 2). The vehicle keeps
the RSU’s id received in the broadcast message (Line 3). Then, the vehicle checks if its
identification number is included in this message. If so, its state changes to VCloudHead
(Line 5) and starts the leadership in this VC (Line 6). The VCloudHead must inform its
neighbors about its new role in the network. For this, it creates a VCloudHead message,
adds its identification, the identification of the RSU that supports it, the number of hops
to the VCloudHead (which in this case is 0 because it itself is the VCloudHead), and
sends the message on the network (Lines 7 to 10). If, when receiving a broadcast message
from the RSU, the vehicle’s status is not UNDEF, it checks if it already acts in the role
of VCloudHead (Line 12). The vehicle checks if it is still listed as a VCloudHead, and if
not, it ends its leadership at this point (Line 13 to 15).

Algorithm 2: VCloudHead receiving broadcast message from the RSU
Input: msg

1 if broadcast message from the RSU then
2 if status = UNDEF then

▷ Checks based on RSU’s id
3 myRSU ← msg.rsu
4 if myId = msg.V CloudHead then
5 status← V CloudHead
6 VCloudStarted(currentTime())

▷ VCloudHead message
7 msg.V CloudHead← myId
8 msg.RSU ← myRSU
9 msg.hops← 0

▷ Send message to neighbors
10 SendVCloudHeadMessage(msg)

11 else
12 if status = V CloudHead then
13 if myId ̸= msg.V CloudHead then
14 status← UNDEF
15 VCloudDied(currentTime())

Additionally, to illustrate the entire message exchange process on the network, some
actions must be taken when the VCloudHead informs its neighbors about its role in
the VC. Algorithm 3 presents an abstraction of this phase. The receiving vehicle has two
possibilities when receiving a message from another vehicle. The first is that this neighbor
is a VCloudHead and the second is that it is a VCloudMember. However, the actions taken
in both cases are the same. First, the number of hops in the message is verified to limit
retransmissions in the information region of interest, which is the coverage of the RSU
(Line 1). After that, the vehicle checks if its state is UNDEF or VCloudMember (Line 2).
If so, the vehicle creates a relay message and updates some information, such as its status
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becomes VCloudMember, stores its current VCH, stores its current RSU, and increases
the number of hops in the relay message (Lines 3 to 7). As the environment is distributed
at this stage, the vehicle may receive this message several times from other neighbors.
Hence, checking whether the vehicle has retransmitted this message at this interval is
necessary to reduce the number of duplicate messages on the network (Lines 8 and 9).

Algorithm 3: Receiving relay message
Input: msg
▷ Retransmissions just one hop beyond the RSU’s Rmax

1 if msg.hops ≤ 3 then
2 if status ̸= V CloudHead then
3 Create relay message msg
4 Update status for VCloudMember
5 Store my current VCloudHead
6 Update my current RSU
7 Increment number of hops by 1

▷ Send a message if you haven’t sent it yet
8 if message not yet sent then
9 SendBroadcastMsg(msg)

Regarding the mobility prediction, we consider the ARIMA model for our evaluations.
ARIMA is a statistical model for analyzing and predicting time series and works by taking
series values and making them stationary if necessary. A stationary time series has no
trend, and the amplitude of its variations around the mean is constant. Future series
values are considered a linear combination of past values and past moving averages in
the ARIMA model. ARIMA is described as a 3-tuple (p, d, q), where p is the number
of past measurements weighted in the estimate, d is the number of differentiation series
to make statistically stationary, and q is the number of previous moving averages. The
basic formulation of the model is given by Equation (4.4). We denote past terms as l,
past moving averages as µ, while θ and Φ are individual weights for each term and will
be model trained.

lt = θ0 + Φ1lt−1 + Φ2lt−2 + · · ·+ Φplt−p (4.4)

−θ1µt−1 − θ2µt−2 − · · · − θpµt−p

In summary, the number of past value terms and moving averages depends on the series
considered. Some series mainly depend on weighted past values and do not need moving
average terms. The model can be represented by the ARIMA(3, 1, 0) notation, which
means three previous terms are used, a differentiation is performed, and previous moving
averages are not considered. ARIMA is used for single-variable time series forecasting,
requiring a different latitude and longitude training step for vehicles [136]. Therefore, the
model is trained for each vehicle and its respective geographic coordinates [28].
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Computational complexity

The PREDATOR’s time complexity is analyzed as follows. As shown in Algorithm 1,
the time complexity is mainly dominated by the ARIMA method runtime, which is es-
timated as O(m) [57], where m is the number of observations in the input data. In
summary, the time complexity of ARIMA depends on the specific method used to fit
the ARIMA model to the input data. The most common method for fitting an ARIMA
model is Maximum Likelihood Estimation (MLE), which is computationally efficient and
typically considered to have polynomial time complexity. In our evaluation, we used the
library statsmodels.tsa.arima.ARIMA from the Python language, which uses the MLE
to estimate the parameters.

Additionally, with the verification of each vehicle in the RSU’s coverage, we have a
time complexity of O(n), where n is the number of vehicles within that RSU (|Nk|). Also,
the predicted positions of each vehicle are also checked, resulting in a time complexity
of O(pred). However, pred takes a value equal to the prediction window size T , which
is fixed and makes it a constant. The search for the maximum value of S performed in
line 3 also employs a time complexity of O(n). Assignment and comparison operations
do not directly influence the time complexity calculation. Therefore, it can be noted that
PREDATOR operates with a time complexity of O(n×m)+O(n), which is O(n×m). In
summary, PREDATOR is a mechanism that operates in polynomial time and is efficient
enough to operate in practical scenarios.

4.3 Performance Evaluation

This section describes the methodology and metrics used to evaluate PREDATOR per-
formance in a VEC environment. First, we show the simulation environment, including
implementation, scenario parameters, and evaluation metrics. Second, we discuss the
obtained results.

The simulation platform to evaluate the performance of the designed mechanism is
composed of the Simulator of Urban Mobility (SUMO) 1.11.0, the network simulator
OMNeT++ 5.6.1, and the vehicular networking framework Veins 5.2 [134], which imple-
ments the IEEE 802.11p protocol stack for V2X communication and signal attenuation.

We consider two mobility traces to establish vehicular evaluation scenarios. The first
trace considers a Manhattan Grid (Grid) scenario [3] with 1 km2 area, as shown in Fig-
ure 4.3(a). In this case, the traffic behavior is configured to use the Krauss car-following
model for its accuracy and simplicity [80]. Second, we consider the realistic mobility trace
of the Luxembourg city (LuST) [25, 113], as shown in Figure 4.3(b). We selected a 2 km2

area with 5 intersections connecting the city center of Luxembourg city to a freeway.
The simulations in this scenario start at 08 am (28 800 s) because it represents one of the
times with high vehicular traffic. Also, we conducted 33 and 5 simulations with different
randomly generated seeds for the Grid and LuST scenarios, respectively. All results show
the values with a confidence interval of 95%.

In both scenarios, RSUs have a higher communication range than vehicles. For RSUs,
we consider the transmission power equal 6.1mW. Together with the Two-Ray ground
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propagation model, these parameters provide a communication range of 250m. Also, we
use the frequency band of 5.89GHz, a bandwidth of 10MHz, and a bit rate of 6Mbit/s

at the MAC layer [46]. For vehicles, we only change the transmission power to 2.2mW to
give a communication range equal 150m. The beacon frequency was 1Hz [31]. Simulation
time was 200 s for Grid and 500 s for the LuST scenario. After the simulation gets stable
(i.e., after a warm-up period defined as 100 s), the VC formation process starts. We
setup 5 RSUs at the main intersections in all scenarios, as indicated by red points in
Figures 4.3(a) and 4.3(b).

(a) Grid scenario (b) LuST scenario [25]

Figure 4.3: Simulation scenarios considered.

We consider an ARIMA(2,2,1) configuration in these scenarios. This means that we
consider two past values, the series is differenced twice to achieve stationarity, and there
is one moving average term. We utilize a GridSearch estimator to find the optimal
parameters for the model [109]. At each VC formation interval, set at 5 s, we save the past
mobility data to use as input for future predictions. The 5-second interval is acceptable,
as it allows analyzing changes in the network topology without drastically compromising
the prediction errors imposed by more extended intervals [43, 91]. The prediction model
is implemented in Python 3.8 and connected to Veins using the os.System() interface
in the C++ language. We set α = 0.3 and β = 0.7, meaning that the dwell time in
RSU coverage significantly impacts the relative distance between the vehicle and RSU.
All relevant simulation parameters were considered based on the state-of-the-art and are
listed in Table 4.1.

The main goal of our simulation-based evaluations is to assess the performance of
PREDATOR compared to other state-of-the-art approaches, namely DEGREE [157, 73],
CENTROID [58], and SPATIAL [33, 115]. Additionally, we compare the performance of
PREDATOR with its previous version, called NEMESIS [32]. We include an approach
that utilizes actual knowledge about the vehicles’ mobility, referred to as OPTIMAL. In
line with this, we evaluate the proposed mechanism using seven metrics for performance
assessment, which are categorized into four perspectives or assessments. The details of
these assessments are described below.

1. Mobility prediction assessment:

• Root Mean Square Error (RMSE) quantifies the difference between real data
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and predicted data. This metric is widely used to measure the performance of
predictors.

• Prediction time represents the time required for the model to return the result.
Considers training, testing, and prediction time. In this case, we used an
Intel(R) Xeon(R) CPU X5650 (24 × 2.67GHz) with Linux architecture x86-
64.

2. VC formation assessment:

• Lifetime is the accounting of how many time units the VCs lasted. A high VC
lifetime value means that the leader selected for this VCloudHead is stable,
and the VCloudHead has not been changed frequently.

• Leader changes are the number of times the vehicle is no longer VCloudHead
in the VC. The high number of leader changes implies that vehicles selected as
VCloudHead were not the most stable.

3. Scalability assessment:

• Sent packets shows the total number of transmitted messages by the vehicles in
the network. This result must be interpreted with other metrics. For example,
the approaches must send fewer packets in the network, maintaining their high
performance [31].

• Packet collision shows the total number of packets lost during message trans-
mission. That occurs due to the busy communication channel and bit errors
in received packets.

4. Scheduling assessment:

• Scheduling success shows the total number of tasks that were successfully ser-
viced. This evaluation is essential because it shows the impact of the VCs’
stability in using the aggregated computing resources.

4.4 Results

This section presents and discusses the simulation results, separated into four perspectives,
namely: mobility prediction, VC metrics, scalability metrics, and task scheduling metrics.

Mobility prediction Assessment Perspective

Figure 4.4(a) presents the RMSE results obtained with the considered models, namely
ARIMA, Unmodified Long Short Term Memory (Vanilla-LSTM), and Support Vector
Regression (SVR), in the prediction data. This assessment calculates the average RMSE
among all vehicles in the scenario. However, please note that Figure 4.4(a) exemplifies
the RMSE obtained for only one vehicle. The figure shows that the predictions provided
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Table 4.1: Simulation parameters for Vehicular Cloud (VC) formation assessments.

Parameter Value

Channel 5.89GHz

Bandwidth 10MHz

Data rate 6Mbit/s

Transmission power (RSU) 6.1mW

Communication range (RSU) 250m

Transmission power (Vehicle) 2.2mW

Communication range (Vehicle) 150m

Beacon transmission rate 1Hz

VC formation interval 5 s

Number of RSUs 5
Number of vehicles 100
α, β 0.3, 0.7
ARIMA (p, d, q) (2,2,1)
Vehicle speed limits (Grid) 15m/s

Simulation area (Manhattan Grid) 1 km2

Simulation time (Manhattan Grid) 200 s

Vehicle speed limits (Luxembourg) From the LuST [25]
Simulation area (Luxembourg) 2 km2

Simulation time (Luxembourg) 500 s

by ARIMA achieve an average RMSE of approximately 2.12. In comparison, the predic-
tions provided by Vanilla-LSTM and SVR experience more significant degradations, with
RMSE values of 8.71 and 27.39, respectively. ARIMA performs better than other models
when a smaller amount of past data is considered. This is because applying moving aver-
ages and differentiation becomes more straightforward and faster with a smaller dataset.
Additionally, ARIMA utilizes predicted data to adjust subsequent predictions, serving as
an error correction mechanism.

Figure 4.4(b) presents the prediction time results for the considered approaches. In this
evaluation, SVR exhibits the shortest turnaround time for the prediction results, followed
by ARIMA and Vanilla-LSTM. However, it is essential to compare this result with the
RMSE results presented in Figure 4.4(a). Finding a trade-off between the two results is
crucial. Based on the results, the ARIMA model demonstrates more robust performance
in our mobility scenarios, achieving the best RMSE with a reasonable prediction time of
under 2 s. Therefore, we utilized the ARIMA model to assist our VC formation process,
setting the time window T to 5 s. Since it is an external process, the prediction time does
not impact the dynamics of the simulation. However, we consider running the predictions
2 s before each interval to account for the model’s processing time. Afterward, we adjust
the predicted value with the actual value received from the RSU.
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Figure 4.4: Prediction results on a single vehicle’s data.

VC formation Assessment Perspective

Figure 4.6 shows the results obtained for VC metrics, such as Lifetime and Leader changes,
considering the two different mobility traces. First, Figures 4.6(a) and 4.6(c) show the
VCs’ lifetime results for both scenarios. It can be noted that VCs formed with PREDA-
TOR have longer lifetimes in all observed scenarios. That is, selecting the vehicle that
will spend the most time in RSU coverage makes the VC exist during that vehicle’s travel
time, which is different from the other compared approaches. Also, the number of leader
changes is decreased when PREDATOR is used in all scenarios. This result is expected
because if the vehicle with the longest time in RSU coverage is selected, the leader change
will only occur when that vehicle leaves the intersection covered by the RSU.

In addition, we compare all approaches with a solution that has actual knowledge of
vehicle mobility, called OPTIMAL. The decision mechanism used in this approach is the
same as the one used by PREDATOR. The difference is that the optimal strategy does not
have prediction errors in vehicle mobility information. Thus, we can consider the OPTI-
MAL approach as the baseline. In the Grid scenario, PREDATOR maintains an average
lifetime of 18.69 s compared to NEMESIS’s 14.95 s and CENTROID’s 13.57 s. Yet, the ob-
served optimal lifetime is 24.3 s. Similarly, in the LuST scenario, PREDATOR maintains
a lifetime of 29.33 s compared to NEMESIS’s 24.56 s and the SPATIAL’s 19.99 s. The
OPTIMAL approach achieved 36.66 s of lifetime in this scenario. In this evaluation, fol-
lowed by the result achieved by NEMESIS, SPATIAL is found to be superior to DEGREE
and CENTROID approaches. This result can be justified by the vehicular dynamics of
the realistic scenario, which exhibit fewer drastic changes in vehicle positioning, allowing
the spatial information to remain valid for a longer duration. In summary, PREDATOR
shows an overall improvement of 18.14%, 40.40%, 49.48%, and 60.59% in the VC lifetime
metric over NEMESIS, SPATIAL, CENTROID, and DEGREE, respectively.

Complementarily to the experiment shown in Figure 4.6(a) and to reinforce the impact
of vehicular mobility in the context of VC formation, we conducted an experiment where
the vehicle speed was varied at 0m/s (no mobility), 15m/s (low mobility), and 25m/s

(high mobility) in the Manhattan Grid scenario. As the mobility of the Grid scenario is
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synthetic, changes in the vehicle speed are entirely possible. Therefore, Figure 4.5 displays
the VCs’ lifetime using all VC formation approaches. Naturally, the performance of all
approaches degrades as the vehicle speed increases since selecting vehicles under these
conditions becomes much more challenging due to high topological changes. However,
it can be observed that PREDATOR remains superior to the other approaches in all
speed variations, except for the OPTIMAL approach, which contains vehicle mobility
information without prediction errors. Furthermore, when mobility is static (vehicle speed
equal to 0m/s), all approaches perform similarly. This is because the initial vehicle chosen
as the leader will retain its leadership throughout the simulation time. In other words,
since mobility remains static, no other vehicle with better rates (degree centrality, closer
to the centroid, greater spatial density, etc.) will be chosen as the new leader.
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Figure 4.5: An example of how vehicular mobility impacts all VC formation solutions

In addition, Figures 4.6(b) and 4.6(d) show the general stability of the created VCs. It
can be observed that PREDATOR spends more time in the RSU coverage, which implies
greater stability in VC management. SPATIAL performs the worst in the Grid scenario as
it selects vehicles based on spatial information, and the synthetic mobility in this scenario
can have drastic directional and positional changes. On the other hand, in the LuST
scenario, the worst-performing approach is DEGREE. This result indicates a high rate of
change in vehicles with the highest degree coefficient indices (largest neighborhood). Given
its positioning changes, the neighborhood density of this vehicle also changes with more
frequency. That is, specifically in this area considered, the flow of vehicles is high, and
the vehicular social contacts accompany this dynamic. In the Grid scenario, PREDATOR
experiences an average of 13 leader changes compared to NEMESIS’s 16 changes and
DEGREE’s 21 changes. Similarly, in the LuST scenario, PREDATOR has 41 leader
changes compared to NEMESIS’s 62 changes and SPATIAL’s 81 changes. The optimal
approach has 6 leader changes in the Grid scenario and 23 changes in the LuST scenario.
Overall, PREDATOR employs improvement in this metric by 26.64%, 50.91%, 52.31%,
and 53.38% over NEMESIS, SPATIAL, CENTROID, and DEGREE, respectively.



57

Cen
tro

id
De

gre
e

Spa
tial

NE
ME

SIS

PRE
DA

TO
R
Op

tim
al

0

5

10

15

20

25
Lif

et
im

e 
(s
)

(a) Grid: VC lifetime

Cen
tro
id
De
gre
e
Spa

tial

NE
ME
SIS

PRE
DA
TO
R
Op
tim
al

0

5

10

15

20

25

30

VC
H 
ch
an
ge
s (
#)

(b) Grid: Leader changes

Cen
tro
id
De
gre
e
Spa

tial

NE
ME
SIS

PRE
DA
TO
R
Op
tim
al

0
5

10
15
20
25
30
35
40

Lif
et
im
e 

(s
)

(c) LuST: VC lifetime

Cen
tro
id
De
gre
e
Spa
tial

NE
ME
SIS

PRE
DA
TO
R
Op
tim
al

0

20

40

60

80

100

120

140
VC
H 
ch

an
ge

s (
#)

(d) LuST: Leader changes

Figure 4.6: VC formation results considering different mobility traces.

Scalability Assessment Perspective

Regarding scalability metrics, Figures 4.7(a) and 4.7(c) present the results regarding the
number of packets sent on the network by the evaluated approaches. In this evalua-
tion, only the messages transmitted among vehicles are considered, as the number of sent
packets by the RSU is the same in both approaches, given that the VC formation in-
tervals are identical. However, the number of sent packets is related to leader changes.
PREDATOR only sends a leader message if the VCloudHead changes from one interval
to another (Algorithm 2). This strategy significantly reduces the number of sent packets.
Thus, we observe that PREDATOR transmits fewer packets on the network than the
other approaches. This result can be attributed to the findings shown in Figures 4.6(b)
and 4.6(d), as a smaller number of VCloudHead changes leads to fewer warning messages
being sent on the network. The optimal approach employs approximately 2100 sent pack-
ets in the Grid scenario and around 5640 sent packets in the LuST scenario. In summary,
PREDATOR demonstrates improvements of 28.75%, 53.96%, 55.38%, and 55.94% over
NEMESIS, DEGREE, SPATIAL, and CENTROID, respectively.

Figures 4.7(b) and 4.7(d) show the number of packet collisions. It is important to note
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that all approaches utilize a Flooding algorithm to disseminate warning messages on the
network [31]. We chose this approach due to its simplicity and generally good performance
in terms of delivery rate on the network. However, maintaining stable leader selection
already leads to significant improvements in network performance metrics. PREDATOR
exhibits the lowest number of packet collisions on the network since it transmits fewer
warning messages. The OPTIMAL approach results in approximately 618 collided packets
in the Grid scenario and around 2000 in the LuST scenario. Therefore, PREDATOR
demonstrates improvements of 30.58%, 45.86%, 47.48%, and 50.28% over NEMESIS,
DEGREE, SPATIAL, and CENTROID, respectively.

Cen
tro
id
De
gre
e
Spa
tial

NE
ME
SIS

PRE
DA
TO
R
Op
tim
al

0

1000

2000

3000

4000

5000

6000

7000

Se
nt
 P
ac

ke
ts
 (#

)

(a) Grid: Sent packets

Cen
tro

id
De

gre
e

Spa
tial

NE
MESI

S

PRE
DA

TO
R
Op

tim
al

0

500

1000

1500

2000

Pa
ck

et
 c
ol
lis

io
n 
(#

)

(b) Grid: Packet collision

Cen
tro
id
De
gre
e
Spa
tial

NE
ME
SIS

PRE
DA
TO
R
Op
tim
al

0

10000

20000

30000

40000

50000

60000

70000

Se
nt
 P
ac

ke
ts
 (#

)

(c) LuST: Sent packets

Centro
id

Degree
Spatial

NEMESIS

PREDATOR
Optim

al0
1000
2000
3000
4000
5000
6000
7000
8000

Pa
ck

et
 c

ol
lis

io
n 

(#
)

(d) LuST: Packet collision

Figure 4.7: Networks metrics considering different mobility traces.

Scheduling Assessment Perspective

Considering the created VCs’ stability, it was necessary to simulate a practical application
of this scenario. The application concerns the use of vehicular computational resources
that were aggregated in the VC Formation process. This use is called task scheduling
and must consider the processing time constraints of each task. As there is no order
restriction for executing the tasks that arrive at the system, abstractions of Bag-of-Tasks
applications were considered for this evaluation.
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In this sense, the scheduling evaluation was modeled as follows: there is a set of tasks
where each task has a processing time necessary for its completion. When a task is sched-
uled, its scheduling success is only computed when the total processing time is reached.
If the VCloudHead changes, the task is automatically canceled, and its interruption is
computed. The controller present on the network is responsible for selecting which VCs
will process a given set of tasks. On the other hand, the VCloudHeads are responsible for
managing the processing of these tasks between their VCloudMembers.

Algorithm 4 presents a pseudocode of what happens in the VCloudHead vehicle when
it receives the schedule message from the controller. VCloudHead starts a timer to control
when the task completes its execution (Line 1). Therefore, VCloudHead adds a time unit
to the timer (Line 3). As the VC formation process is independent of the scheduling
process, verifying if the current vehicle is still VCloudHead of this VC at each instant
is necessary. If the vehicle is VCloudHead, it checks if the control timer is equal to the
task’s processing time and, if so, the task has been completely executed in the VC (Line
5). VCloudHead informs the controller about the execution of the task and computes
the scheduling success. However, if the vehicle is no longer VCloudHead during the task
execution process, it is checked if its control timer is less than the task processing time
and, if so, the task was interrupted (Line 7). The vehicle informs the controller and
accounts for the schedule failure.

Algorithm 4: Task scheduling control in VCloudHead
Input: schedule message msg with VC information, such as computational

resources and number of VCloudMembers
▷ VCloudHead receives scheduling message
▷ VCloudHead starts a control timer

1 scheduleT imer ← 0
2 foreach time slot do
3 scheduleT imer ← scheduleT imer + 1
4 if status = V CloudHead then
5 if scheduleT imer = msg.time then

▷ Complete task execution
▷ Informs the controller through RSU
▷ Scheduling success

6 else
7 if scheduleT imer ̸= msg.time then

▷ Stop task execution
▷ Informs the controller through RSU

8 scheduleT imer ← 0

The simulation settings were the same used in the evaluation of VC formation pre-
sented in the previous section. However, to assess the efficiency of VCs, we consider
applications with processing times ranging from 5 s to 10 s. As the objective is to evaluate
the efficiency of VCs about stability, other metrics besides the time of tasks and VCs were
not considered. The number of tasks was varied by 10, 15, 20, 25, and 30.
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(a) Task scheduling in the Grid scenario
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(b) Task scheduling in the LuST scenario

Figure 4.8: Task scheduling results considering computational tasks with different require-
ments.

Figure 4.8 presents the results for task scheduling assessment. We can see that the
results obtained corroborate the results obtained in evaluating the VCs formation about
the average lifetime of the VCs. That is, the longer the lifetime of the VC, the greater
the chance of it serving a greater number of tasks in the system. Not only that, but
VC stability is crucial to increasing the percentage of successfully processed tasks. As
expected, as the number of tasks grows in the system, the chance that tasks fail to be
scheduled increases. As we can see, the number of tasks scheduled in the LuST scenario is
higher than in the Grid scenario due to the greater stability (lifetime and leader changes) of
the VCs created in this scenario. In all observed scenarios (Grid and LuST), PREDATOR
manages to stay superior in 10.54%, 25.87%, 27.68%, and 34.65% more tasks than the
NEMESIS, CENTROID, SPATIAL, and DEGREE, respectively. PREDATOR is 89.13%
and 86.87% closer to the optimal approach in the Grid and LuST scenarios, respectively.

4.5 Chapter Conclusions

The VEC paradigm emerged and enabled vehicles to actively act in the consumption and
supply of computational power to the VANET. However, due to the dynamic nature of
vehicular mobility, proposing mechanisms that efficiently aggregate vehicular resources
is not a trivial task. This aggregation of vehicle resources is referred to as VC forma-
tion. In this context, we introduced a mobility-aware VC formation mechanism called
PREDATOR, which selects the most stable nodes in the network to perform cloud lead-
ership activities. By leveraging this mechanism, VEC applications can be allocated to
VCs with the assurance that their processes will be successfully completed within the
required time frame. The results demonstrate that PREDATOR can increase the average
lifetime of VCs, reduce the number of leader changes within these clouds, and minimize
network message exchanges compared to other approaches in the literature, resulting in
fewer packet collisions. Furthermore, PREDATOR provides enhanced stability to VEC
applications with stringent deadline constraints.
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Chapter 5

Mobility- and Deadline-aware Task
Scheduling Mechanism

In the VEC scenario, each network controller, called VEC controller, is responsible for
coordinating a predefined city region, such as a neighborhood, for forming the VCs based
on the regional knowledge about the vehicle and infrastructure nodes through the V2I
communication. Hence, the VEC controller can be responsible for two main processes,
namely, VC formation and task scheduling [76, 111, 33]. The VC formation process
concerns an efficient grouping and management of computational resources available by
the network entities to form a VC [14, 102]. On the other hand, the task scheduling process
concerns the efficient use VC resources, i.e., the tasks will be scheduled to be processed in a
given VC. Therefore, these two processes are crucial to group computational resources and
provide cloud services closer to vehicular users. Advance the state-of-the-art in the task
scheduling process is essential to the success of connected autonomous vehicle ecosystems.
New approaches to efficiently select and decide where and when tasks will be scheduled
in dynamic and mobile vehicular environments are required. At least three key issues
need to be addressed for developing an efficient task scheduling mechanism to meet users’
demands in VEC scenarios, namely (i) Vehicular Mobility ; (ii) Deadline Constraints ; and
(iii) Monetary Costs.

The Vehicular Mobility is one of the main challenging factors for the efficient per-
formance of vehicular scenarios with support to VEC applications since vehicle mobility
causes several changes in network topology and (including intermittent connections) [31].
For instance, vehicular mobility causes an unexpected disconnection between VC mem-
bers and the VEC controller, leading to a fluctuation in terms of the number of available
resources in the VC and/or causing the task processing results loss, impacting the sys-
tem efficiency. Hence, the mobility of vehicles has a high impact in the number of tasks
attended/scheduled [124]. In this sense, it is essential to consider vehicular mobility infor-
mation to estimate vehicles’ location, which can be used to estimate the future resource
availability in each VC. This aims in selecting stable VCs to run the tasks, where VC’s
stability refers to its low rate of resource variability over time. However, how to predict
these vehicular dynamics accurately and explore their spatiotemporal correlation is still
an open issue [45]. In this sense, RNN can use in vehicular mobility estimates due to their
high accuracy rates in general form predictions [44, 67, 15].
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The Deadline Constraints represent the time that tasks can wait to be served. In
other words, it is important that the obtained result must be returned to the requesting
entity before a hard deadline. Otherwise, this result becomes useless [148, 19]. Therefore,
the tasks’ deadline constraints can be better observed and considered from a resource
availability estimation in the VCs, making it possible to infer the processing time and
the service probability to increase the scheduled and completed tasks rate. Also, the
system latency is minimized by prioritizing tasks with less processing time. The system
latency represents the waiting time and the time that a task will remain running in a
given processing configuration.

Finally, Monetary Cost refers to the price of using computational resources, such
as the pay-as-you-go basis commonly used in cloud computing IaaS architectures [143].
For instance, the monetary cost can be minimized by knowing the task processing time,
making using computational resources less costly for the end users. In addition to task
deadline constraints, the tasks often have high processing requirements. Scheduling tasks
with high computational power requirements, such as traffic image processing or real-time
learning, is a challenging issue in a highly dynamic vehicular environment [135]. In other
words, the task scheduling mechanisms must make accurate decisions considering all the
tasks’ computational requirements, regardless of the variability of these requirements in
different classes of applications. Besides, scheduling mechanisms must always minimize
costs for end-users.

To the best of our knowledge, a unique solution that considers mobility-awareness,
deadline constraints, and monetary costs for decision-making in a task scheduling process
is still an open issue and remains a challenge. Thus, this chapter proposes MARINA
(Mobility and deAdline-awaRe task schedulIng mechaNism for vehiculAr edge comput-
ing) to maximize the number of tasks scheduled while minimizing the monetary costs of
utilizing VC’s resources. The MARINA runs on VEC controllers to coordinate the task
scheduling in multiple VCs. In MARINA’s operation, a vehicle without enough compu-
tational resources to run a specific task can forward this task to be processed somewhere
in the vehicle ecosystem. In this sense, MARINA selects a set of tasks to be scheduled
in real-time in each available VC based on the Pareto Optimality and BCP. Pareto opti-
mality allows the joint minimization between the deadline and estimated processing time.
Besides, the BCP makes it possible to find the best fit for the minimization provided by
Pareto, always seeking to maximize the number of scheduled tasks. MARINA also con-
siders an LSTM to predict resource availability in each VC based on vehicular mobility
information. Hence, MARINA prioritizes scheduling tasks in VCs with more available
resources to maximize the fulfillment of demands in as few rounds as possible. Simulation
results show that, compared to state-of-the-art solutions, MARINA can schedule more
tasks while minimizing monetary cost and system latency.

The main contributions of this chapter are the following:

• The use of vehicular mobility information and an LSTM architecture to predict the
available resources in each VC with high accuracy.

• An efficient task scheduling mechanism that considers the task deadline, mobility-
awareness, and monetary costs in its decision-making process. Thus, it schedules a
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Table 5.1: Summary of key notations for the task scheduling study.

Symbol Description Symbol Description

U set of vehicles ui a vehicle ∈ U
B set of BSs by a BS ∈ B
V set of VCs vj a VC ∈ V
T set of tasks tl a task ∈ T
C set of controllers ωui

vehicle’s CPU-cycle
n # of tasks ϕui

vehicle’s storage
x # of vehicles ωby BS’s CPU-cycle
m # of BSs/VCs ϕby BS’s storage
e # of controllers Ωj VC’s total CPU-cycle
l index of task Ψj VC’s shared CPU-cycle
i index of vehicle Φj VC’s total storage
j index of VC Dt

l task deadline
o index of controller dtlj task proc. time in VC j
y index of BS Cl task monetary cost
Q waiting queue wt

l task CPU-cycle required
R run queue Price(tl) resource price used by tl
R number of regions P pareto set

high number of tasks without increasing the monetary cost of using VC’s computa-
tional resources.

• A combined approach that leverages low-computational complexity techniques to
minimize the monetary cost and maximize the number of scheduled tasks.

• A detailed performance evaluation with a realistic mobility trace, showing the ben-
efits of vehicular mobility information for the task scheduling process compared to
other state-of-the-art approaches.

5.1 MARINA

This section introduces the MARINA task scheduling in VEC scenarios, which consid-
ers available resources, tasks’ deadline constraints, and vehicular mobility for decision-
making. We first overview the designed system and then illustrate the VCs formation
process, mobility prediction approach, and monetary cost model. Finally, we formulate
the problem. Table 5.1 summarizes the key notations used in this work.

Overview

Figure 5.1 shows the system architecture composed of vehicles, BSs, VEC controllers,
and an RS in the Internet cloud. We consider a scenario composed of x moving vehicles,
denoted as ui ∈ U = {u1, u2, . . . , ux}. Also, we consider a set of BSs deployed in the
city, denoted as by ∈ B = {b1, b2, . . . , bm}, where m is the total number of BSs. Each BS
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Figure 5.1: The architecture employed by MARINA, presenting its main components; in
particular, Vehicular Clouds (VCs) and Vehicular Edge Computing (VEC) controllers.

has wired communication (e.g., optical fiber) with the RS and could provide processing
power and storage capacity on the network edge, decreasing response time for some ap-
plications [90]. Also, each BS on the 5G network has an Xn interface, which allows the
information exchange between neighboring BSs and assists in the handover process [152].
Each vehicle has an OBU that allows communication with the neighbor devices through
V2X communication. For instance, vehicles can associate with a BS and communicate
with an RS to access the Internet, request resources for data processing, and share their
resources.

We used a BS-UE (Base Station-User Equipment) method based on the maximum
SINR for this association process. In this case, a vehicle will associate with a BS which
provides the Max-SINR [142]. The Max-SINR ensures that the vehicle is associated with
only one BS [86]. After the association between vehicle and BS, the BS sends the vehicle’
information to RS.

In this scenario, we consider the city divided into R regions (neighborhoods), and each
region has at least one BS. We also consider that each VEC controller covers a given region
R, and it is randomly deployed in a given BS of such region. It is important to mention
that VEC controllers are randomly deployed in the scenario since this is not our research
focus. We denote the set of VEC controllers as co ∈ C = {c1, c2, . . . , ce}, where e = |R|
is the total number of controllers, and directly related to the number of regions R. Each
controller is responsible for managing the BSs in its city region, where this management
includes the VC formation and task scheduling processes.

In the VC formation process, the VEC controller requests to the RS the informa-
tion about BSs and vehicles to build their regional knowledge. In this case, the Pub-
lish/Subscribe paradigm is considered to obtain the relevant information without inserting
unwanted traffic on the network. The VEC controller subscribes to BSs’ updates in its re-
gion. Thus, the RS plays the role of Publisher, and the regional VEC controllers play the
role of Subscribers. Based on the information about the BSs, the VEC controllers could
starts the VCs formation process. In this sense, VCs can be classified in different regions
according to BSs’ positions in the city. Considering that the number of VCs is the same
number of BSs in the scenario, we can denote a set of VCs by vj ∈ V = {v1, v2, . . . , vm},
where m is the total number of VCs. A VC consists of a set of nodes (i.e., vehicles and



65

time series

M
A

R
IN

A

2

B
S

 a
ss

oc
ia

tio
n

resource repository
4

prediction in k secs
LSTM3

VEC ControllerBS
co

lle
ct

 B
S

 in
fo

1

RS

Figure 5.2: Vehicular Cloud (VC) formation process – from Base Station (BS) association
to scheduling – based on a prediction approach using Long Short-Term Memory (LSTM).

BS) that can share two types of computational resources ω and ϕ, namely CPU-cycle
frequency (processing power) and storage capacity, respectively.

In this context, ωui
denotes the vehicle’s CPU-cycle frequency, ϕui

denotes the vehicle’s
storage capacity, ωby denotes the BS’s CPU-cycle frequency, and ϕby denotes the BS’s stor-
age capacity. Therefore, each VC is represented by a tuple {id, resourcesvehicles , resourcesbs ,

resources total}, where id is the VC’s unique identification, resourcesvehicles is the total re-
sources of vehicles (ωui

and ϕui
), resourcesbs is the total resources of BS (ωby and ϕby),

and resources total is the sum of resources in the VC (Ωj and Φj), calculated as

Ωj =
x∑

i=1

ωui
+

m∑
y=1

ωby , if ui, by ∈ vj, (5.1)

Φj =
x∑

i=1

ϕui
+

m∑
y=1

ϕby , if ui, by ∈ vj. (5.2)

In short, the total amount of processing power resources Ωj and Φj of each VC vj is the
sum of the shared resources from each vehicle ui and BS by belonging to a given VC vj.

Figure 5.2 depicts the VCs formation process based on a spatial layer to add temporal
information about vehicle mobility and their computational resources. We assume that
BS is aware of vehicle mobility to add the temporal layer in the VC formation, which is
possible to take advantage of beacons already exchanged by vehicles to obtain the vehi-
cles’ information, avoiding extra overhead. Specifically, each vehicle transmits periodic
beacons containing its id, computational resources, speed, positioning, and route. In this
sense, the BS receives such information and forwards it to the RS. Based on the informa-
tion requested by the VEC controller to the RS, the VC formation process begins with
mapping which BS holds which vehicles in its coverage (Label 1 in Figure 5.2). Given
the history of associations in the BSs, it is possible to decompose this information into
time series representing the time variation of vehicles in each VC (Label 2 in Figure 5.2).
Spatiotemporal information on the dynamics of resources in each VC is created and stored
in the regional VEC controller. Considering the importance of estimating the resources
available in a VC to make task scheduling decisions with high precision, an LSTM-based
prediction model is used in this step. With this, we can define a time window and es-
timate the resources available in each VC (Label 3 in Figure 5.2). Finally, a resource
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Figure 5.3: Time series created by the system for a Vehicular Cloud (VC).

repository stores the predicted information, and the MARINA consults such spatiotem-
poral information for decision-making (Label 4 in Figure 5.2). Therefore, it is possible to
estimate resources available in each VC in k time slots by considering the spatiotemporal
information. In this sense, we can represent the resources available at VC in each k ∈ K

by Ωjk and Φjk.

Mobility prediction model

We consider a mobility prediction process to add a temporal layer to the spatial informa-
tion about vehicle mobility and their computational resources, which is essential in task
scheduling scenarios for VCs environments. In this sense, we need to estimate the vehi-
cles’ dwell time in each VC, enabling to obtain information on the VCs’ computational
capacity in a predefined time window.

Several works consider Markov models, Extended Kalman Filter (EKF), SVR, and
Autoregressive Integrated Moving Average (ARIMA) models to predict vehicular mobil-
ity [137, 122]. However, neural networks have gained increasing attention from academia
and industrial groups for the accurate predictions offered by their various models. In this
scenario, an RNN is a deep learning approach that extends the traditional feed-forward
networks with internal cycles [83]. These internal cycles allow tracking information se-
quences to create spatiotemporal knowledge through current and past inputs. LSTM is
an advanced version of the RNN architecture developed to model chronological sequences
and their long-term dependencies with greater precision [56].

In this sense, to employ an RNN in MARINA, we need to build a dataset containing
resources available information in each VC. The model learns from past dynamics and
accurately estimates the available resources in a given time window. To this end, the
information about user association in a given BS is stored in the RS. In this way, when
the VEC controller starts the VC formation process, it is easier to aggregate and create
each VC’s resources time series. Let Z = {z0, z1, . . . , zk} be a vector that represents the
dataset, in which each element consist of a tuple zk = {timestamp, resources} representing
a simulation step and resources available in this step, for each VC, as shown in Figure 5.3.

In summary, the predictor model is defined as f = Υ ◦Θ, where ◦ indicates applying
function Υ on function Θ’s output. The feature learning machine Θ(·), which converts
inputs into features, is utilized to process the input data first. After that, the next step
involves the representation function Υ(·), which maps features into a prediction [44]. In
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Figure 5.4: Recurrent Neural Network (RNN) employed by MARINA.

this sense, the prediction process of the next available resources for each VC is given
according to

zk+1
Ωj

= Υk ◦Θk(z
k
Ωj
). (5.3)

where zk+1
Ωj

represents the next available resources of the VC j considering its previous
observations zkΩj

.
Figure 5.4 shows how the RNN employed by MARINA works. In summary, the RNN

receives an input zk representing a set of tuples, and for each VC, it employs an LSTM
as a recurrent layer. The dynamic employed by LSTM is to store past information in
long-term memory to explore the internal relationships between each prediction. The
information persists across the network and is used in comparisons to improve prediction
estimates [63]. Finally, the output represents the future resources available in each VC
given a time window k.

5.2 Problem Definition

Each task tl ∈ T = {t1, t2, . . . , tn} is denoted by a tuple {idtl , stl , wt
l , Dt

l} where idtl means
the unique task identification, stl denotes the size of task input data, wt

l is the numbers
of CPU cycles required to complete the task, and Dt

l is the deadline constraint. In this
way, the scheduling mechanism aims to optimize scheduling a set of tasks T ′ ⊂ T to be
processed in the available VCs without increasing monetary costs and scheduling as many
tasks as possible.

The computational resources of the same VC are shared among different tasks sched-
uled in that cloud. Thus, Ωj for calculating the computation delay for a given task must
be updated according to the degree of sharing of that resource within the VC, represented
by Ψj. The value of Ωj is divided by the number of tasks |T ′

j| that have been scheduled
for this VC, according to

Ψj =
Ωj

|T ′
j|
. (5.4)

According to the literature, all processes that add delay must be considered to com-
pute the computing delay for a task scheduling in VC, [148, 138, 19]. For example, the
transmission delay of the resource request, the scheduling delay between BS and VC,
the task computation delay in the VC, and the entire reverse path until the requesting
obtains the result of its task. However, this article only considers the task computation
delay in the VC. This is because this metric simplifies the understanding of the efficiency
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of task scheduling solutions, given that the entire network infrastructure is the same for
all approaches. The computation delay dtlj can be obtained based on the required CPU
cycle wt

l divided by the CPU-cycle Ψj of the server (VC), according to

dtlj =
wt

l

Ψj

, ∀ tl ∈ vj. (5.5)

As noted, each task has deadline constraints in its configuration, represented by Dt
l .

Therefore, scheduling solutions must consider this metric to ensure that these restrictions
are respected and tasks are successfully processed in the VCs. In this scenario, if dtlj ≤ Dt

l ,
the task was successfully scheduled and executed in the vj VC. Also, when a task is
scheduled and starts to be processed, there is a cost associated with this execution. The
monetary cost is modeled as

Cl = dtlj ×
(
wt

l × Price(tl)
)
, (5.6)

where dtlj is the tl processing time in vj ∈ V and wt
l is its CPU cycles required. Price(tl)

is the resource price, calculated as

Price(tl) =

{
11.444 if tl uses by’s proc. resources,

5.016 if tl uses ui’s proc. resources.
(5.7)

These costs are based on instances with GPU capacity available on Amazon EC21, such
as g4ad and g3 for BS and vehicle, respectively.

When a task arrives in the system, the VEC controller must select the best VC to
process this task. This selection must consider the monetary cost of using VC’s resources.
In this case, we must first apply a Pareto optimization for a joint minimization between
processing time and task deadline. These metrics are directly related to monetary costs.
Thus, the Pareto set allows us to find, among the queued tasks in the system, a set P that
jointly minimizes the processing time and the deadline. With the Pareto set P defined,
which has the tasks that imply a lower monetary cost, we can select from this set the
tasks that will be processed in the VCs, represented by T ′.

To coordinate this selection, we can reduce this problem as a Bin Covering Problem
(BCP). BCP solves the items’ packaging problem with different weights in a finite set of
bins. Given a set of items, the BCP decides how many items can be stored in the same
bin. The algorithm aims to maximize the number of items stored. However, given that
BCP is a combinatorial NP-hard problem, we use an approximation heuristic First-Fit
Decreasing (FFD) to find a solution to our problem instances in polynomial time [130].
With the FFD heuristic, they are sorted in non-increasing order of sizes before placing
the items in bins. Each item attempts to be placed in the first bin that can accommodate
this item. If no bin is found, a new bin is observed, and the item is put in this new bin.
FFD can be implemented to have a running time of at most O(n log n), where n is the
number of items (tasks).

In this context, we formulate a task scheduling problem by maximizing the number of
1https://aws.amazon.com/ec2/dedicated-hosts/pricing/

https://aws.amazon.com/ec2/dedicated-hosts/pricing/
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Figure 5.5: Pareto set example with 24 tasks.

tasks served while minimizing the cost monetary of VC’s resources used in this process.
It should be noted that minimizing the monetary cost is provided by the step that finds
the Pareto set P . Furthermore, maximization is performed by selecting tasks in the given
Pareto set. In this way, we can define the problem as follows:

P1 : maximize
|P|∑
l=1

tl, l ∈ P , (5.8)

subject to dtlj ≤ Dt
l , j ∈ V, l ∈ P , (5.9)

|P|∑
l=1

stl ≤ Φjk, k ∈ K, j ∈ V, l ∈ P , (5.10)

|P|∑
l=1

wt
l ≤ Ωjk, k ∈ K, j ∈ V, l ∈ P , (5.11)

The constraint (5.9) guarantees that the task deadline is respected, avoiding reschedul-
ing. The constraints (5.10) and (5.11) ensures that VCs’ storage and processing limits
are respected during the k required processing time intervals.

MARINA’s operations

In short, MARINA first searches for the Pareto set P using the joint minimization of task
processing times and task deadlines as a criterion, creating a vector for each criterion
(processing time and deadline). Therefore, the vectors are arranged in a 2-dimensional
plane, and the Pareto set is found. Figure 5.5 presents an example of searching for the
Pareto set in a queue with 24 tasks. We can obtain a Pareto solution set in 2-dimensional
in polynomial time O(n log n) [10]. This step ensures that the tasks selected to be verified
with BCP already have joint minimization of estimated processing times and deadline
constraints. In this case, this directly impacts the overall monetary cost.

As discussed earlier, the VEC environment is highly dynamic due to vehicular mo-
bility. Therefore, many works model VEC environments as an M/M/1 queue to bring
the system’s dynamics closer to the real world [148, 131]. However, in realistic scenarios,
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several entities can process existing requests. Also, it is essential to consider that the
service time of the queued tasks is defined by the task requirements, such as size, required
number of CPU cycles, and deadline constraints [148]. Thus, we consider that our VEC
environment works as an M/G/z queue. The tasks arrive in the system following a Pois-
son process (M). The service time of the tasks is defined by their characteristics (that is,
it follows a general distribution G). Finally, the system has more than one server (z) to
attend to requests, which are the various VCs formed in the scenario.

When tasks arrive in the system, they are queued. Traditional approaches schedule
tasks based on the organization in that queue. However, as the processing time and dead-
line of the tasks are crucial factors, MARINA prioritizes the minimization of these aspects
in its decision-making process. That is, if a scheduling choice returns a lower processing
time than another, the use of resources will also be minimized. In the same way, the mon-
etary cost associated with the lower processing time will also be minimized. However, to
perform this selection, MARINA needs to know the processing time of all queued tasks.
In this step, Equation (5.5) estimates the processing time since it is unknown how many
tasks will be scheduled in this VC.

Algorithm 5 shows how our VEC system works over time. Initially, the data structures
that store the tasks in the system, the tasks in execution, and the VCs of the scenario are
created (Lines 1 and 2). In a dynamic environment, tasks are generated independently,
following an arrival rate that can be defined after observing the system’s behavior. Thus,
each time slot k ∈ K and following a Poisson process, a set of tasks arrives in the system
to be executed (Line 3). The task set is queued and goes on standby to be scheduled
and executed (Line 4). For the task scheduling process to occur, it is necessary to know
the VCs available in the scenario. Thus, if k is equal to the VC formation interval, the
formation process occurs, and the VC information is maintained until the next interval
(Lines 5 and 6). If the Q queue is not empty (Line 7), the queued tasks and the set of VCs
are passed to the task scheduling mechanism (Lines 8 and 9) presented in Algorithm 6.
After the scheduling process, verification is performed at each time slot k if the tasks in
the R queue (run queue) reached their processing time in each VC (Lines 10 and 11).
If the task has completed its execution, the monetary cost is calculated, and the task is
removed from Q and R queues (Lines 12 to 15). Otherwise, the task execution estimate
is updated, as other tasks may have left the system, and more resources may be available
at the corresponding VC (Lines 16 and 17). We emphasize that Algorithm 5 is executed
in the VEC controllers.

After a VC formation process, task scheduling is triggered, and information such as
available VCs and the set of tasks is provided to the MARINA. In summary, Algorithm 6
describes the MARINA’s operations in a VEC controller. In this sense, the controller gets
the VC set V and task set T , which gives the T ′ task scheduling set as an output. The set
V is sorted non-increasing, so VCs with more available resources are prioritized (Line 1).
Two vectors are created based on T , the first PT for the estimated processing time, and
the second D for deadlines (Lines 3 and 4). MARINA calls the procedure ParetoSet
with configuration for joint minimization of vectors PT and D (Line 5). The procedure
returns a set P containing the ID of the tasks that are part of the minimal Pareto set.
With the Pareto set defined, the BCP uses this task subset to schedule tasks, considering
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Algorithm 5: Vehicular Edge Computing (VEC) environment
1 Q,R ← ∅ ▷ Waiting and Run queues
2 V, T ← ∅ ▷ VC and Task sets
3 foreach time slot k ∈ K do
4 Q.enqueue(Tk)
5 if k is update interval then
6 V ← update VCs with model in Section 5.1

7 if Q ≠ ∅ then
8 T ← Q
9 R ← MARINA(T, V ) ▷ Algorithm 6

10 if R ≠ ∅ then
11 foreach r ∈ R do
12 if r has completed its execution then
13 compute cost with Equation (5.6)
14 Q.dequeue(r)
15 R.dequeue(r)

16 else
17 Update r computation estimation

other computational requirements of each task (Line 6). In this step, BCP returns a
subset of candidate tasks S ′. Also, the total number of resources needed for this returned
set is calculated (Line 7). After that, for each task in the set, it is verified if the VC
will have available resources until its deadline Dt

l (Lines 8 and 9). If not, that task is
removed from the set S ′ and its required resources are removed from the total resource
estimate (Lines 10 and 11). If so, its actual processing time is calculated (Line 13). If
the processing time is longer than its deadline, the task is removed from S ′ and will be
rescheduled in the next round. Otherwise, set S ′ is added to the scheduled tasks list T ′.

Computational complexity

The MARINA’s time complexity is analyzed as follows. MARINA has three main stages.
The first stage runs in time O(n log n) in the worst case, which is the time complexity
to find Pareto set [10]. In the same direction, the BCP algorithm needs O(n log n) to
sort non-increasing order of items by sizes (CPU cycles) and to cycle through all the
items to be checked. Also, the number of tasks decreases based on the select VC with
maximum resources available, where the number of VCs is represented by m. In the worst
case, the second and third stages have linear O(n) complexity to check the deadline and
computation delay constraints for each temporarily scheduled task S ′. Finally, a constant
F is added that represents the computational complexity of the prediction step, which
may vary according to the technique used. In summary, the algorithm’s time complexity
can be described as O(max{m}+n log n+F) in the worst case, with m being the number
of VCs and n the number of tasks. In this context, MARINA is a polynomial-time
algorithm.
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Algorithm 6: MARINA mechanism overview
Input: task set T and VC set V
Output: scheduled tasks T ′

1 V ← decreasing order of available resources
2 foreach vj ∈ V do
3 PT ← processing time (tl, vj) for each tl ∈ T
4 D ← deadline of each tl ∈ T
5 P ← ParetoSet({PT,D}, sense=[min,min])
6 S ′ ← BinCoveringProblem(P , vj)

7 totalResources←
|S′|∑
l=1

wt
l , ∀tl ∈ S ′

8 foreach t′ ∈ S ′ do
▷ use predicted vehicular information

9 if totalResources < vj until Dt
l then

10 S ′ ← S ′ \ {t′}
11 totalResources← totalResources− t′

12 else
13 dtlj ← Equation (5.5)
14 if dtlj > Dt

l then
15 S ′ ← S ′ \ {t′}
16 else
17 T ′ ← S ′

18 return T ′

5.3 Performance Evaluation

This section describes the methodology and metrics used to evaluate MARINA perfor-
mance in a VEC environment. First, we show the simulation environment, including
implementation, parameters, and evaluation metrics. Second, to better understand the
resource prediction model used, we present LSTM results compared to other models in
the literature. Finally, we present and discuss the results of task scheduling using the
prediction model employed and the main insights.

Simulation environment

The experiments were carried out with the SUMO, in version 1.11.0. The algorithms were
implemented in Python 3.8 and connected to SUMO through the TraCI interface. We
considered a deterministic realistic mobility trace from TAPAS Cologne2 project, which
reproduces vehicle traffic in the city of Cologne, Germany, as shown in Figure 5.6(a).
The trace contains vehicular mobility from 6 to 8 AM on a typical working day and
covers a region of 400 km2. However, only a city submap with 114 km2 was picked for our
simulation experiments because it contains a greater variability of vehicles over time and

2http://kolntrace.project.citi-lab.fr/

http://kolntrace.project.citi-lab.fr/
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(a) TAPAS Cologne submap (b) Base Stations (BSs) in the
scenario
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Figure 5.6: Simulation scenario.

up to 700 vehicles at peak times. The simulation time was 700 s, with 100 initial seconds
of warm-up, as shown in Figure 5.6(c). The simulations were run 33 times to obtain a
95% confidence interval.

The Bag-of-Tasks (BoT) applications were considered since they have no dependence
on each other and can be executed out of the submission order. The tasks’ deadline varies
between 3, 5, and 7 seconds. This is important to generalize the representation of possible
application classes. The VC formation interval was defined in 5 seconds. The scenario
considers different task arrival rates (i.e., 1, 3, and 5 tasks/second) following a Poisson
distribution [41, 148, 138]. Also, the size stl of each task is [1, 10] MB. The number of
CPU cycles wt

l required to complete the task is fixed in [1, 30] Million of Instructions (MI).
We consider that a vehicle ui makes available resources (CPU-cycle capacity and storage
capacity) in 1 unit/vehicle, the number of CPU cores ωui

(CPU-cycle capacity in Million
of Instructions Per Second (MIPS)), which without loss of generality is proportional to
the storage capacity ϕui

(1MB). In this way, we can get an idea of the impact that sharing
lower resource units employ on the system. The communication ranges of vehicles and
BSs were 250m and 2000m, respectively.

In addition, we consider 14 BSs, and each one is capable of sharing processing and
storage resources, where such values were configured at 15 MIPS and 15MB, respectively.
We deployed 4 VEC controllers, and each can manage up to 4 neighboring BSs. We
deployed the BSs in the city following positioning information provided by the TAPAS
Cologne project, as shown in Figure 5.6(b). Moreover, we used the TensorFlow framework
version 2.8.2 to implement the RNN [1]. We also consider a Graphics Processing Unit
(GPU) NVIDIA(R) Tesla V100 with 5120 CUDA cores and 32 GB of VRAM to train the
ML models. Table 5.2 summarizes the main simulation parameters.

We considered three scheduling mechanisms to compare their performance with MA-
RINA, namely: (i) UNC [60] task scheduling scheme is a classic queuing theory algorithm
that is widely used as a policy for scheduling tasks in computational systems. It is similar
to First-Come-First-Serve (FCFS) scheme, but the UNC scheme is free to select any task
in the task queue for scheduling during the current time. (ii) FORESAM [117] considers
a multi-criteria analytical method to select the most appropriate VC to receive the task.
FORESAM considers all task requirements. (iii) CRATOS [33] considers a combinatorial
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Table 5.2: Simulation parameters for task scheduling assessments.

Parameter description Value

BS’s wireless communication range 2000m
Vehicle’s wireless communication range 250m
Mean size of the tasks [1,10] MB
Required CPU of the tasks [1,30] MI
Task delay constraint 3, 5, and 7 s
Tasks distribution Poisson
Tasks arrival rate λ 1, 3, and 5 tasks/second
Computational capability of each BS 15 MIPS
Computational capability of each vehicle 1 MIPS
Number of vehicles 550 ∼ 700
Simulation time 700 s
Scenario area 114 km2

Number of VEC controllers 4
RS’s communication latency [1,5] ms
Recurrent layer Bidirectional LSTM
Loss function Mean Square Error (MSE)
Batch size 64
Sequence length 5
# of LSTM cells 128
Number of epochs 100

optimization approach to schedule tasks in the available VCs. The algorithm was adapted
for our scenario. The value of each task was defined as 1, given that, by default, the tasks
have no value associated with them.

We consider the following evaluation metrics:

• Root Mean Square Error (RMSE): quantifies the difference between ground-truth
and predicted data regarding resource availability in each VC. This metric is widely
used to measure the performance of predictors. In our case, it was used to evaluate
and decide the best model for predicting vehicular resources for the proposed task
scheduling mechanism.

• Scheduled tasks (%): percentage of successfully scheduled tasks. We consider suc-
cessful scheduling when a task is scheduled in a VC and can be executed respecting
its deadline constraint.

• Monetary Cost ($/time): represents the monetary cost of using VC’s computational
resources for k units of time. As defined in Section 5.2, a VC comprises vehicles and
BS, each of which has a different monetary cost.

• System latency (s): refers to the processing time of the task in a given computational
configuration plus the queue waiting time. That is, this metric shows how efficient
the decisions made by the mechanisms are.
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• CPU time (s): represents the sum of the execution time of all the processes involved
in the mechanism. This time may vary depending on the machine’s configuration
used in the evaluation. For this evaluation, we used an Intel(R) Xeon(R) CPU
X5650 (24×2.66GHz) with Linux architecture x86_64.

5.4 Results

Mobility prediction

We used 85% of the samples of the data for training and 15% for testing to analyze
the RNN performance in our scenario. The prediction performance of the RNN was
measured in terms of RMSE compared to Dense Neural Network (DNN) and Support
Vector Regression (SVR), which are two approaches widely used in state-of-the-art to
predict time series. Figure 5.7 shows an example of a time series built for VC with ID
number 4. As can be seen, most of the time series (85%) is used for model training, with
the remainder (15%) being used to test the predictions. Given the characteristics of the
mobility trace, records from 6000 s were disregarded as they only contain the dynamics of
removing vehicles from the simulation.
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Figure 5.7: Example of the data used for the training and prediction processes.

Figure 5.8 compares the RMSE obtained in the predictions with the considered models.
This assessment considers the average RMSE among the 14 VCs in the scenario in different
time horizons for prediction. At this stage, we performed an exploratory assessment of the
size of the prediction window. This is important to show the degradation of the prediction
as the prediction window increases, which is expected in this type of evaluation. Thus,
for each VC, we consider the prediction windows 5, 10, 15, 20, 25, 30, 60, 120, 180, 240,
and 300 seconds. In summary, the hyperparameters for training the LSTM model are:
number of epochs = 100, batch size = 64, and number of LSTM cells = 128.

In this sense, we can see that the predictions provided by LSTM achieve an average
RMSE of about 0.1 in most prediction windows, while the predictions provided by DNN
and SVR suffer more significant degradations as the prediction window increases. LSTM is
generally more efficient than other models at considering past events to provide predictions
closer to dataset ground truth. Thus, this type of RNN proved ideal for helping our task
scheduling mechanism. Based on the results, the LSTM proved to be more robust in
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resource prediction phase. Thus, we chose to use it to help our task scheduling process
with the time window setting equal to 5 s.
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Figure 5.8: Results of resource predictions by Long Short-Term Memory (LSTM), Dense
Neural Network (DNN), and Support Vector Regression (SVR).

Task scheduling

Figure 5.9(a) shows the behavior of the waiting queue Q over the simulation time consid-
ered if no scheduling mechanism is used. Different arrival rates significantly increase the
difficulty of orchestrating the task schedule process. For example, at the highest arrival
rate (λ = 5), 4500 tasks are queued at the end of the simulation run. In other words, it
is a challenging scenario, considering that task sizes and deadline constraints also vary
according to their arrival in the system.

Figure 5.9(b) shows the difference in packets sent on the network, considering the
centralized and hybrid architectures. In this sense, in a centralized architecture, where
one entity makes all the decisions and builds its global knowledge, all vehicles must
maintain communication with that entity. Thus, the number of packets sent per time
unit is directly related to the number of vehicles communicating with the central entity.
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However, in a hybrid architecture, intermediary entities aggregate the messages of vehicles
in their coverage and send this information to the remote server in a single data stream.
The number of data messages transiting the network core is significantly reduced. In this
evaluation, we can observe an average reduction of 50% in the number of sent packets on
the network when the hybrid architecture is considered.
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(a) Example of task queue Q over the simulation
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Figure 5.9: Task arrival rate example and total sent packets on the network.

Figure 5.10 displays the percentage of successfully scheduled and executed tasks with
different maximum delay constraints 3, 5, and 7 seconds, respectively. We can check
the behavior of the mechanisms when the system receives a high load of requests. All
mechanisms improve their performance as the deadline increases. However, we can see that
they all have difficulty scheduling as the task arrival rate increases. In all configurations
MARINA performs better than other mechanisms. Also, when the arrival rate is equal
to 1, MARINA can schedule over 91% of the tasks in the configurations with the largest
maximum deadline constraint, as shown in Figure 5.10(a). Both FORESAM and UNC
operate similarly in this configuration. CRATOS has the worst performance when the
deadline increases. This is due to its selection strategy, which is only concerned with the
task size, not considering fundamental aspects such as deadline and computation delay.
The tasks scheduled with CRATOS have processing restrictions that are not considered
in its decision-making process. In the configuration with a task arrival rate equal to 3,
MARINA already starts to have difficulty scheduling when the deadline grows, as shown
in Figure 5.10(b). However, the MARINA still manages to schedule up to 90% of tasks
in scenarios with the highest deadline constraints. In this configuration, we see a more
significant difference between FORESAM and UNC due to UNC applying the simple
greedy policy. In this scenario, MARINA is superior in all configurations considered.
Finally, when the task arrival rate is 5, MARINA maintains its results closer to 88%.
FORESAM has results close to MARINA in this scenario. In FORESAM’s setup, the
main factor taken into account in its decision process was the task deadline, so when the
deadline increase, its scheduling choices cannot relate to all the problem restrictions well.
Even applying a simple scheduling method, the UNC can handle many requests compared
to CRATOS.

Figure 5.11 shows the monetary cost of using the computational resources of the VCs.
As mentioned in Section 5.2, the cost of the vehicle’s resources is less than that of the
BS. Therefore, to minimize this cost, the approaches choose to select the resources of the
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Figure 5.10: Results of the scheduled tasks with different maximum deadline constraints
and task arrival rates.

vehicles for the scheduling first. We can see that MARINA minimizes the monetary cost
in all evaluations. In this case, it is natural for the performance of all mechanisms to fall
due to the percentage of scheduled tasks that also decreases in more challenging scenarios,
as shown in Figure 5.10. The best performance of MARINA occurs due to the selection
of the tasks considering the VC’s predicted available resources and the joint minimization
provided by the Pareto set approach. Applying BCP allows a more significant number
of tasks to be scheduled out in the same VC, prioritizing that such resources come from
vehicles and not from BS. In addition, the more challenging the scenario (increasing
the task arrival rate) becomes, the more costly the scheduling process becomes. More
computational resources need to be used to run the existing tasks. MARINA reduces the
monetary cost by up to 80% in all scenarios. CRATOS proves to be more costly because
its decision process involves only the amount of computational resources available. In
this way, many tasks are rescheduled during the mechanism’s operation, thus increasing
its final monetary cost. The UNC maintains its expected behavior of increasing the
monetary cost as deadline constraints increases. The application of Pareto set and BCP
by MARINA allows the best task set to be scheduled in the same VC with minimum
processing time and deadline constraints.
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Figure 5.11: Results of the monetary cost with different maximum deadline constraints
and task arrival rates.

Figure 5.12 depicts the system latency results, including the computational delay and
queue time. This metric is important because it shows the impact of scheduling tasks
in a given processing configuration and is directly associated with how the scheduling
approach selects VCs. We can see, in all evaluations, that MARINA reduces the compu-
tation delay of the tasks in the VCs. Hence, it is mainly due to selecting the VCs employed
by MARINA, filtering based on the VC’s processing rate considering the task deadline
constraint. In addition to selecting the VC with greater computational capacity, selecting
tasks based on the joint minimization of processing time and deadline helps reduce system
latency. In addition, CRATOS and UNC employ a higher computation delay in all assess-
ments due to their decision strategy that considers only the order in which tasks arrive
in the system. Specifically, in the configuration with a tasks arrival rate equal to 3 and 5,
MARINA and FORESAM stabilize their performance due to the absence of considerable
variation in the number of tasks scheduled, as shown in Figures 5.12(b) and 5.12(c). In
summary, MARINA has better managed VC’s resources when considering aspects of both
tasks and VCs in its decision-making process. In other words, an efficient task scheduling
approach should maximize the number of scheduled tasks while minimizing the time that
such tasks await their schedule.
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Figure 5.12: Results of the system latency with different maximum deadline constraints
and task arrival rates.

Finally, Figure 5.13 presents the CPU time by the VEC controllers that run the
scheduling approaches. This metric is directly related to the approach’s computational
complexity. Also, an approach that manages to schedule more tasks has more overall CPU
time, even with less computational complexity. In all evaluations, UNC has lower CPU
time because its selection method is simple, selecting the task to be scheduled based on its
order of arrival in the system, operating with time complexity O(n2), where n is the total
number of tasks. CRATOS has the second-lowest CPU time, but this can be justified by
the number of tasks scheduled and successfully executed, even having pseudo-polynomial
complexity (O(max{m}+n×W ), where m is the set VC, n is the number of tasks, and W

is the size of the VC considered in each round). FORESAM has a high CPU time because
it iteratively selects one task at a time given a VC, making a more significant number
of checks for each VC considered in the round. FORESAM uses the AHP technique in
its decision process, and the time complexity of AHP is O(min{mn2,m2n}), where m

is alternatives, and n is criteria. Finally, MARINA has CPU time statistically close to
FORESAM. This is also true of its iterative decision-making process. In certain rounds,
the returned Pareto set may be small, requiring further rounds to fill the VC. A 2-
dimensional set is constructed at each decision round, and the algorithm searches for the
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Pareto optimal set, taking O(n log n) time.
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Figure 5.13: Results of the Central Processing Unit (CPU) time with different maximum
deadline constraints and task arrival rates.

5.5 Chapter Conclusions

This chapter introduced MARINA, an efficient task scheduling for VEC environments.
MARINA divides its scheduling process into three stages. The first step is finding the
Pareto set based on a joint minimization of processing time and deadline constraints.
After that, it applies BCP with the FFD heuristic to select a set of tasks for a given VC,
aiming to maximize the number of tasks scheduled and minimize the monetary cost of
this processing. The second step selects the tasks based on the correlation between the
tasks’ deadline constraint and predicted information about the computational resources
available in each VC. Finally, the third step verifies the processing time of these tasks in
the selected VC to reduce the computation delay and, consequently, the monetary cost
of using the computational resources. MARINA employs an RNN architecture to predict
vehicular resources in VCs and assist in its decision-making process.
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Chapter 6

Fairness and Load Balancing in
Vehicular Clouds

As already discussed and exemplified in previous chapters, one of the main challenges of
task scheduling in VCs is the dynamic nature of the vehicular network, as vehicles move
and change their position, making it challenging to predict resource availability in a spe-
cific location. To tackle this challenge, advanced strategies are used to determine the best
task placement based on factors such as communication costs and mobility prediction [69].

However, much less attention has been paid to questions of fairness in resource us-
age in the scheduling process [18]. We treat this as an issue of load balancing among
the nodes processing tasks (vehicles and BSs), that is, distributing the workload evenly
across available computational resources [61]. Load balancing is performed either when a
task arrives or once it has already been queued [99]. It ensures that tasks are allocated
efficiently to prevent resource over or underutilization [75]. By balancing the load, the
system can achieve better resource utilization and response times. Additionally, load bal-
ancing can help mitigate congestion and handle varying demand patterns, resulting in a
more efficient and effective task scheduling process [154]. Therefore, another important
challenge of VCs is to meet user demands by maintaining fair load balancing among avail-
able computational resource usage [18, 61] while still considering node mobility in the
scheduling process.

Towards this end, this chapter introduces FARID (FAir Resource usage in vehIcular
clouDs). FARID uses the same decision strategy employed by MARINA but applies a
probabilistic selection function to choose VCs who will participate in the decision process.
FARID runs on VEC controllers and uses Pareto optimality to schedule tasks in different
VCs. The mechanism splits the set of tasks into different parts to improve the system
efficiency with parallel management, obtaining k different Pareto sets and being able to
make k decisions at the same time, where k is the number of threads running in each VEC
controller. FARID aims to minimize processing time within VCs, thus reducing resource
utilization and, subsequently, monetary costs. Also, it considers contextual aspects in
its decision process, such as resource mobility in each VC and task’s requirements. We
assessed the efficiency of FARID compared to other mechanisms, and the results indicate
its capability to schedule a larger quantity of tasks, minimize monetary costs, and reduce
overall system latency. Lastly, FARID employs better load balancing in the scheduling
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process, resulting in greater fairness in the resource usage of VCs.

6.1 FARID

This section describes FARID, which considers Pareto optimality and a probabilistic se-
lection function to maximize scheduled tasks, load balancing, and fairness in resource
usage.

VC in region B VC in region AVC in region A vehicle

requestscheduling remote server

Xn interface

Figure 6.1: A system architecture employed by FARID, presenting its main components,
such as vehicles, Base Stations (BSs), Remote Server (RS), Vehicular Clouds (VCs), and
Vehicular Edge Computing (VEC) Controllers.

Figure 5.1 presents the system architecture composed of vehicles, BSs, VEC con-
trollers, and a RS in the Internet. The scenario have a set of x vehicles, denoted as
ui ∈ U = {u1, u2, . . . , ux}. Also, there is a set of p BSs deployed in the city, denoted as
by ∈ B = {b1, b2, . . . , bp}. Each BS can communicate with the RS via optical fiber link.

To improve the management of BSs, the city is divided into R regions, and each region
has at least one BS. Furthermore, we consider a set of |R| VEC controllers, since each
region is managed by exactly one controller. Therefore, after the association between the
vehicle and BS, the BS sends this information to the RS. The association process considers
the Max-SINR approach. BS information only is updated as the number of vehicles in its
coverage changes.

In the resource aggregation process (VC formation), the VEC controller needs to re-
quest the RS about BSs and vehicles information to build its regional knowledge [35]. In
this way, the system employs a Publish/Subscribe scheme to obtain the relevant infor-
mation without introducing unwanted traffic into the network. The set of VCs can be
denoted by vj ∈ V = {v1, v2, . . . , vm}, where m is the total number of VCs. We consider
that the number of VCs is the same number of BSs, as the positioning of the BS defines
where the VC will act. In summary, a VC consists of a set of vehicles and BS capable
of sharing processing power ω in MIPS and storage capacity ϕ in Megabytes (MB). The
total amount of processing power Ωj and storage capacity Φj of each VC vj is the sum of
the shared resources of vehicles and BS that make up these VCs.

Due to VC’s resource variability over time, we utilize accurate vehicular mobility data
to determine each vehicle’s stay within BSs’ coverage. Even though mobility prediction
is not the primary focus of this study, we employ an optimal mobility prediction method.
Future vehicle mobility data is gathered from the vehicular dataset within a time window
Z. To simulate prediction errors, we introduce a white Gaussian noise to each collected
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data [37]. Finally, as we now estimate the available resources in the VCs at z ∈ Z time
units, these resources can be denoted by Ωjz and Φjz.

6.2 Problem Definition

Each task tl ∈ T = {t1, t2, . . . , tn} is denoted by a tuple {idtl , stl , wt
l , Dt

l} where idtl repre-
sents the unique identification number, stl denotes the input data size (in MB), wt

l is the
number of CPU cycles required to process the task, and Dt

l is its deadline constraint. The
processing time dtlj (i.e., execution time of a task in a specific computational configura-
tion) can be obtained based on the required CPU cycle wt

l divided by the server’s CPU
cycle frequency Ωj, as dtlj =

wt
l

Ωj
,∀tl ∈ vj.

As VC’s computational resources are shared among different tasks, the Ωj considered
for getting processing time for a given task must be updated according to the degree of
sharing of this resource within the VC, represented by Ψj. Thus, Ωj is divided by the
number of tasks |T ′

j| that were scheduled in this VC to yield Ψj =
Ωj

|T ′
j |
, j ∈ V .

Additionally, each task has a deadline constraint Dt
l . This deadline represents a time

limit that the task can wait to be processed. If dtlj ≤ Dt
l , the task can be scheduled and

executed in the VC vj. Also, when a task is scheduled and starts to be processed, there
is a cost associated with this execution. The monetary cost is modeled as

Cl = dtlj × (wt
l ×ResourcePrice(tl)). (6.1)

where dtlj is the tl processing time in vj ∈ V and wt
l is its CPU cycles required.

ResourcePrice(tl) indicates the resource price used and is set to $14.309 (if tl uses BS’s
resources) or $6.27 (if tl uses vehicles’ resources). The prices are based on instances avail-
able on Amazon EC2 1 (Region Europe, Frankfurt), such as g4ad (BS) and g3 (vehicle).

In summary, when a task arrives in the system, it is queued and waits until it is
scheduled. The VEC controller must select the VC to process this task. This selection
decision should consider the VC’s processing power over time and the task requirements.
So, to consider these different objectives, a task scheduling problem was formulated that
primarily seeks to maximize the number of tasks scheduled considering constraints that
directly impact the monetary costs, as follows:

maximize
n∑

l=1

tl, l ∈ T, (6.2)

subject to dtlj ≤ Dt
l , l ∈ S ′, j ∈ V, (6.3)

n∑
l=1

stl ≤ Φjz, l ∈ S ′, j ∈ V, z ∈ Z, (6.4)

n∑
l=1

wt
l ≤ Ψjz, l ∈ S ′, j ∈ V, z ∈ Z. (6.5)

1https://aws.amazon.com/ec2/dedicated-hosts/pricing/

https://aws.amazon.com/ec2/dedicated-hosts/pricing/
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The constraint (6.3) guarantees that the task deadline is respected and helps reduce
the monetary cost, avoiding rescheduling. Also, constraints (6.4) and (6.5) ensure that
VCs’ storage and processing limits during the z required processing time intervals are
respected.

FARID’s operation

...
tasks queued

0 Scheduler

requests

VC #1

VC #2

VC #3

0

1 2

3

tasks scheduled tasks waiting

1

2

123 ƒ

load-balancing function

dispatcher

Figure 6.2: The task scheduling pipeline with a load-balancing function integrated into
the scheduler.

Figure 6.2 presents a simplified task scheduling process pipeline in VCs. In summary,
tasks are queued on the VEC controller as soon as they arrive in the system (Label 1 ). In
this phase, the task can assume two states, waiting and scheduled. A task can assume a
scheduled state and return to a waiting state if the VC fails to complete its processing and
the task’s deadline is Dt

l > 0. From that moment on, the task deadline must be observed
constantly since the task is waiting for the scheduler’s decision. Based on its criteria,
the scheduler decides which VC the task will be processed. This scheduler can employ
a load-balancing strategy to increase fairness levels in utilizing the VEC’s computational
resources. A Dispatcher has the role of distributing the tasks to the corresponding VCs
(Label 2 ). The task distribution ratio is stored by VEC controller for load-balancing
purposes in future decisions. Finally, the VCs receives the tasks and starts processing
(Label 3 ).

In this context, FARID seeks the Pareto set using a dual-criteria approach: it simul-
taneously minimizes tasks’ processing times and deadlines. A distinct vector is created
for each criterion (processing time and deadline), arranged in a 2-dimensional plane to
find the Pareto set. We can obtain a Pareto set in 2-dimensional in polynomial time
O(n log n) [37]. Besides, as the objective is to maximize the number of tasks scheduled,
we simplify our problem to an instance of the BCP, which solves this issue [35].

Furthermore, FARID divides the task queue and set of VCs into k parts to make the
scheduling process more efficient. Now, each k part is responsible for calculating a Pareto
set and the universe of available VCs is smaller for the BCP application. FARID makes k
decisions simultaneously. This division is performed in the Dispatcher. The Dispatcher
Function in Algorithm 7 exemplifies this splitting process.

With the scheduling decision taken, carrying out a load balance among the available
VCs to increase fairness in resource usage is essential. With this in mind, we consider a
selection probabilistic function when the scheduler needs to select the VC in the scheduling
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process. After a VC is selected, its selection probability decreases. Thus, when FARID
selects the VCs in the next round, an ordering of the probability vector is performed,
and the VC with the highest current probability is selected. With that, after m rounds,
all VCs are selected at least once during the execution of FARID, where m is the total
number of VCs.

In summary, every VC has an original probability of being selected during the schedul-
ing process, according to

P 0
j , j = 1, 2, . . . ,m (6.6)

The selection probability is halved (0.5) if the VC is selected in the current round.
Otherwise, the previous probability is maintained, according to Equation (6.7).

P z
j =

{
0.5 · P z−1

j , if item j was selected

P z−1
j , otherwise

(6.7)

To avoid the scenario that after a high number of rounds, the probability of a VC is
reduced to zero and it is never selected again, a minimum nonzero probability is considered
as

P z
j =

{
0.0001, if P z

j ≤ 0

P z
j , otherwise

(6.8)

Algorithm 7 describes the operations of FARID in a VEC controller. The controller
gets the VC set V , the task set T , and the number of threads k, which gives the S scheduled
task set as output. The Dispatcher Function splits the T and V into k parts and starts
the execution of the Decision Function in parallel for each defined k (Lines 2 and 4). In
the Decision Function, the VCs’ probability vector is sorted in descending order to select
VC with the highest selection probability (Line 6). For each v checked and selected, the
probability must be updated (Line 8). Two vectors are created based on T , the first R for
the estimated processing time, and the second D for deadlines (Lines 9 and 10). FARID
calls the procedure ParetoSet with configuration for joint minimization of vectors R

and D (Line 11). The procedure returns a set P containing the id of the tasks in the
Pareto set. After that, FARID runs BCP to select the best subset S ′ ∈ P that best fits in
V (Line 12). Also, the total number of resources needed for this returned set is calculated
(Line 13). For each task in the set S ′, it is verified if the VC will have available resources
until its deadline Dt

l (Line 15). If not, that task is removed from the set S ′ (Line 16).
If so, its actual processing time is calculated (Line 19). If the processing time is longer
than its deadline, the task is removed from S ′ and will be rescheduled in the next round.
Otherwise, set S ′ is added to the scheduled tasks list S (Line 23).

6.3 Performance Evaluation

This section describes the methodology and metrics used to evaluate the efficiency of
FARID. The experiments were carried out with the Simulation of Urban MObility (SUMO)
1.16.0. The algorithms were implemented in Python 3.8.10 and connected to SUMO
through the TraCI interface. We used a central sub-map of 114 km2 from TAPASCologne
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Algorithm 7: FARID mechanism overview
Input: task set T , VC set V , and number of threads k
Output: scheduled tasks set S

1 Function Dispatcher(T , V , k):
2 Split task set T into k parts
3 Split VC set V into k parts
4 Running Decision (Tk, Vk) for each thread k

5 Function Decision(T , V ):
6 V ← descending order of selection probability
7 foreach v ∈ V do
8 Update v’s probability using Equation (6.7)
9 R← tasks’ processing time for v

10 D ← tasks’ deadline
11 P ← ParetoSet({R,D}, obj=[min,min])
12 S ′ ← BinCoveringProblem(P , v)
13 totalResources← Sum all resources in S ′

14 foreach t′ ∈ S ′ do
15 if totalResources < vj until Dt

l then
16 S ′.remove(t′)
17 totalResources← totalResources− t′

18 else
19 dtlj ← As shown in Section 6.2
20 if dtlj > Dt

l then
21 S ′.remove(t′)

22 else
23 S ← S ′

24 return S
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Table 6.1: Simulation parameters for fairness and load balancing assessments.

Parameter description Value

BS’s wireless communication range 2000m
Vehicle’s wireless communication range 250m
Mean size of the tasks [1,10] MB
Required CPU of the tasks [1,30] MI
Task delay constraint [0.5, 0.8), [0.8, 1.0], and (1.0, 3.0] s
Tasks distribution Poisson
Tasks arrival rate λ 5 tasks/second
Computational capability of each BS 15 MIPS
Computational capability of each vehicle 1 MIPS
Number of vehicles 550 ∼ 700
Simulation time 800 s
Scenario area 114 km2

Number of VEC controllers 4
RS’s communication latency [1,5] ms

trace2, which reproduces vehicle traffic in the city of Cologne, Germany. We consider 2

hours of vehicular mobility and up to 700 vehicles. The simulation time was 800 seconds,
with 100 initial seconds of warm-up. We ran the simulations 33 times to obtain a 95%
confidence interval.

The BoT applications were considered since they can be executed outside the arrival
order. The tasks’ deadline varies between [0.5, 0.8), [0.8, 1.0], and (1.0, 3.0] seconds. This
is important for generalizing different application classes. VC formation intervals were 5

seconds. The arrival rate of tasks λ is 5 tasks/second, following a Poisson distribution.
The communication ranges of vehicles and BSs were 250 and 2000 meters, respectively.

Furthermore, the size assigned to the tasks was stl = [1, 10] (MB), and the CPU cycles
required varying in wt

l = [1, 30] Million of Instructions (MI). The number of CPU per
vehicle is 1, which without loss of generality represents 1 MIPS. Each vehicle’s storage
capacity has been simplified to 1 MB. 14 BSs were used, and each can share processing
power equal 15 MIPS and storage capacity equal 15 MB. 4 VEC controllers were con-
sidered, and each can manage up to 4 neighboring BSs. The BSs deployment positions
followed the information provided by the TAPASCologne project.

We compared the performance of FARID with three approaches, namely: RANDOM,
which combines a policy based on First-Come, First-Served (FCFS) [60] with a randomized
policy to select VCs [9]; EFESTO [37], which uses Pareto optimality in the task scheduling
process and selects VCs with more resources every round; and AHP-EV [106], which uses
the AHP multi-criteria approach in its decision-making process. Table 6.1 summarizes
the main simulation parameters.

The metrics used for evaluation were: i) Scheduled Tasks represent the percentage
of tasks successfully completed; ii) Monetary Cost refers to the resources usage price;
iii) System Latency refers to the processing time plus the queue waiting time; and iv)

2https://sumo.dlr.de/docs/Data/Scenarios.html

https://sumo.dlr.de/docs/Data/Scenarios.html
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Fairness represents Jain’s fairness index. This metric is widely used to measure how fair
the use of resources is in a computational system.

6.4 Results
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Figure 6.3: Simulation results considering different deadline constraints.

Figure 6.3(a) shows the percentage of successfully scheduled and executed tasks. The
performance of all approaches enhances as the maximum deadline extends. This means
that the mechanisms have more time for decision-making and can make more unsuccessful
attempts until the deadline is reached. FARID can schedule more tasks in all observed
scenarios. Also, our mechanism can schedule more than 98% of tasks in configurations
with less complex time constraints (maximum deadline (1.0, 3.0]). The use of mobility
information helps in more accurate decisions, ensuring that the task will complete its
processing in the selected VC. EFESTO is the second mechanism that can schedule more
tasks. However, the fact that it only considers one Pareto set can make the decision
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process difficult, as possible better subsets are disregarded. The AHP-EV reaches lower
levels of scheduling, compared to the two previous mechanisms, due to its decision strategy
that selects only one pair (task, VC) at each round. This approach aims to integrate the
criteria, which are the task requirements, and select the best task for the current VC.
RANDOM has the worst performance in all scenarios. This is due to its decision strategy,
which is only concerned with the task’s size employed by FCFS, disregarding fundamental
aspects such as deadline and processing time. Besides, the selection of VCs is carried out at
random to increase fairness in the use of resources. In the most challenging configuration,
with a maximum deadline equal to [0.5, 0.8), FARID is still superior, but managing to
schedule only 61% of tasks.

Figure 6.3(b) shows the results regarding the system latency, which includes queue
waiting time and task processing time. In this metric, the lower latency means the
scheduling rounds are more efficient. In all the evaluation scenarios, it can be observed
that FARID reduces the system latency. The best result is mainly achieved due to the
selection of VCs employed by FARID, which minimizes the task processing time and the
deadline constraint jointly. Also, the use of k decision-makings at the same time allows
a smaller universe of tasks to be explored and helps to reduce system latency. In this
way, FARID can handle a more significant number of tasks in a shorter time than other
approaches. Mobility information helps estimate future resources, guaranteeing lower
error rates in its scheduling process. RANDOM has higher latency in all evaluations due
to its decision-making prioritizes the task size. EFESTO has an advantage over AHP-
EV in the least challenging scenario (maximum deadline (1.0, 3.0]). In summary, FARID
improved resources management by incorporating contextual aspects of tasks and VCs
into its decision-making process.

Figure 6.3(c) shows the monetary cost of using the VCs’ computational resources. As
the resource prices differ, as discussed in Section 6.2, the approaches prioritize vehicle
resources to minimize the final monetary cost. It can be noted that FARID minimizes the
monetary cost in all evaluations performed. The best performance of FARID is due to the
selection of tasks considering the future resources available in the VC. Pareto optimality
allows the best task set to be scheduled in the same VC with minimum processing time
and deadline constraints. Furthermore, separating the queued tasks into k parts makes
the checks more efficient, and FARID makes fewer errors during the scheduling decision.
RANDOM performs worse on this metric because its selection of VCs is entirely random,
which does not guarantee that the task will be completed on the VC selected.

Finally, Figure 6.4 presents the fairness index obtained by the approaches when select-
ing VCs for scheduling. FARID obtains the best fairness index in all considered evaluation
scenarios. The probability-based VC selection function allows all VCs to be selected dur-
ing the scheduling process, thus increasing the network’s ability to meet user demands (as
seen in Figure 6.3(a)). The RANDOM approach obtained the second-best performance
in this metric because it randomly selects a VC each round. This way, the chance of all
VCs being selected increases significantly. However, it is crucial to view these metrics
holistically. It is not sufficient for a scheduling approach to have a high fairness index if
it can not satisfy even 15% of user demands in more complex scenarios. EFESTO has
the worst fairness index since it prioritizes VCs with more resources in each scheduling
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Figure 6.4: Jain’s fairness index considering different deadline constraints.

round.
Figure 6.5 presents a visualization of the spatial distribution of tasks across VCs. This

visualization complements the data shown in Figure 6.4. In this context, the EFESTO
approach concentrates the majority of tasks in a single VC, which is, by definition, the VC
with more available resources. The AHP-EV approach schedules tasks across VCs based
on the multicriteria selection provided by AHP. AHP is a multicriteria decision-making
technique that evaluates alternatives based on weighted criteria. When applied to task
scheduling in distributed systems, AHP might favor tasks with higher priority or impor-
tance according to the defined criteria. This can result in uneven resource utilization and
imbalanced load across different VCs, undermining system efficiency and fairness. The
RANDOM approach demonstrates an acceptable spatial distribution of tasks due to its
random nature in VC selection. However, fairness and load balancing must be analyzed
along with the scheduling metrics, as both metrics need to be maximized. FARID is
superior, as it jointly maximizes the scheduling metrics, fairness, and load balancing in-
dices. The homogeneous distribution of tasks across VCs becomes apparent when FARID
is considered.

6.5 Chapter Conclusions

In this chapter, we presented a task scheduling mechanism for VEC environments, using
the Pareto optimality principle to select the best task set to be scheduled in VCs. We
combine Pareto optimality with BCP to find the most suitable fit between tasks and
VC resources. The task selection is based on contextual aspects, such as the processing
time and task deadline. Besides, we consider vehicular mobility information to estimate
the resources in each VC. The proposed approach also guarantees high levels of fairness
in using vehicular resources, applying a probability function for load balancing on the
selected VCs. Compared to state-of-the-art solutions, FARID has a higher level of fairness
and can schedule more tasks while minimizing monetary costs and system latency.
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Figure 6.5: Spatial distribution of tasks processed with deadline equal to [0.5, 0.8).
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Chapter 7

Final Remarks

This chapter summarizes this thesis and discusses directions for future research. The
objective is to highlight our main contributions and point out some possible directions
to proceed with the research to address the drawbacks of the proposed solutions. In this
context, we first present the thesis conclusions in Section 7.1. Then, in Section 7.2, we
present future directions of this work. Finally, in Section 7.3, we present the publications
related to this thesis.

7.1 Conclusions

The constant technological advancement has made cars increasingly intelligent and con-
nected. This evolution significantly impacts the automotive sector as the industry strives
to make vehicles increasingly intelligent and autonomous. In this context, specific appli-
cations and services, such as artificial intelligence applications and distributed learning,
are emerging that require increasing computational power. Considering this, strategies
must be developed to circumvent these resource limitations and provide services with
computational resources closer to the network edge. With this in mind, MEC emerges,
bringing resources to the edge of the cellular network that can be used by the end users,
thus avoiding congestion in the network core.

VANETs can take advantage of the benefits brought by MEC, giving rise to what
is called VEC. The VEC aims to aggregate the computational resources of vehicles and
make them available on the network. This aggregation occurs through the clustering of
vehicles, or as it is addressed in the VEC context, through the VCs formation. However,
due to the inherent characteristics of VANETs, such as high mobility and intermittent
communication, this VC formation is a significant challenge. And not just that, for ser-
vices to utilize the resources present in these clouds, efficient task scheduling mechanisms
must be elaborated for this challenging scenario.

Considering all of this, this thesis presented a set of solutions that mitigate the impacts
of mobility in this VEC scenario. Each proposed solution is related to a research question,
and this relationship can be summarized as follows:

1. Research Question 1: How to form more stable VCs and ensure longer lifetimes?
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A mechanism based on vehicular mobility prediction for VC formation, referred to
as PREDATOR, was proposed to address this question. PREDATOR is executed in
network controllers present in RSUs, utilizing the information exchanged between
vehicles and RSU through beacon messages to create a dataset and apply the mobil-
ity prediction method. With this information, PREDATOR can identify the most
stable nodes (vehicles) to lead the VC. PREDATOR was compared to other ap-
proaches found in literature, and the results indicate that it outperforms these in
both synthetic mobility scenarios and realistic ones. PREDATOR was introduced
in detail in Chapter 4.

2. Research Question 2: How to ensure that the topological dynamics of the VANETs
does not negatively influence task scheduling in VCs?

A mobility- and deadline-aware mechanism for task scheduling in VEC scenarios,
named MARINA, was proposed. MARINA uses an RNN architecture to estimate
the computational resources of each VC. Besides, MARINA uses Pareto optimality
as a decision strategy and models the scheduling problem as an instance of BCP.
In this way, MARINA uses information from future resources with the scheduling
mentioned above strategies to ensure that tasks are processed in VCs with a bet-
ter chance of completing the processing. Simulation results in a realistic vehicular
mobility scenario show that MARINA schedules more tasks while reducing system
latency and the monetary cost of using resources in the VEC. MARINA was intro-
duced in detail in Chapter 5.

3. Research Question 3: How to use the computational resources of VCs in a fair and
balanced way without degrading the system’s overall efficiency in task scheduling?

A task scheduling mechanism concerned with fairness and load balancing in the
utilization of vehicular resources has been proposed to address this question. The
mechanism was called FARID. FARID uses the same decision strategy employed by
MARINA but applies a probabilistic selection function to choose VCs who will par-
ticipate in the decision process. Additionally, FARID divides the decision problem
by partitioning the task waiting queue into k segments and applies multithreading to
solve these subproblems in a parallel manner. This division results in lower system
latency. Moreover, the probabilistic selection function enables all VCs to partici-
pate in the scheduling process at least once, leading to a more balanced processing
load in the VEC scenario. Simulation results in a realistic mobility trace show that
FARID schedules more tasks and has more fairness rate in resource utilization than
state-of-the-art solutions. In addition, FARID reduces overall system latency and
lowers the monetary cost of using VEC resources. FARID was introduced in detail
in Chapter 6.

7.2 Future Work

With the development of this thesis, some points have been observed and can be explored
in the future. These points include:
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• Learning Applications: Evaluation of VCs formed for distributed learning ap-
plications, such as Federated Learning and Split Learning [150, 21]. Given that
RSU/BS aids the VCs formed with computational capacity and the presence of
VEC controllers, learning applications can be used to validate the concept of VEC
and process these applications even closer to users who do not have sufficient com-
putational power for heavier learning models.

• Security: Security in VEC includes several essential components. Data security
and communication security are essential to safeguard enormous amounts of data
from illegal access or network attacks. Because sensitive personal data is used,
privacy protection is crucial. System and data integrity assurance, secure authenti-
cation, and access control techniques are required to thwart hostile alterations. VEC
systems must be resilient to cyber threats and secure edge nodes from physical and
virtual intruders. Last but not least, efficient incident response techniques are es-
sential for quick action during security breaches, improving VEC systems’ overall
robustness and dependability [158, 132].

• Blockchain: Integrating blockchain into VEC presents advantages. Blockchain’s
decentralization enhances data integrity and security, reducing the risk of single-
point failures and unauthorized data manipulation. Its immutable ledger feature
offers a transparent, traceable record of transactions, facilitating data accountabil-
ity and trust. Blockchain’s smart contracts can automate processes, improving effi-
ciency and reliability. It can also aid in creating a trusted and secure environment
for V2V and V2I communication. Moreover, it can enable secure, peer-to-peer data
trading between vehicles, rewarding those contributing useful data and encouraging
active participation in the vehicular network [81, 68].

• Metaverse: Incorporating the metaverse concept into VEC could offer unique ad-
vantages. The metaverse, a collective virtual shared space, could enhance real-time
data sharing and processing in VEC, improving V2V and V2I communication. This
could foster a richer, multi-dimensional traffic information system, enhancing nav-
igation and safety. Furthermore, metaverse could facilitate virtual simulations of
traffic patterns or vehicle behavior, aiding in better traffic management and opti-
mization of vehicle performance. It might also enable a more immersive, interactive
in-vehicle experience for passengers, blending the physical journey with virtual ele-
ments for entertainment or information, thereby transforming the overall vehicular
experience [62, 74, 5].

• Satellites: Incorporating Low Earth Orbit (LEO) satellites into VEC provides nu-
merous advantages. LEO satellites, due to their proximity to Earth, offer lower
latency communication, enhancing real-time data exchange between vehicles and
the edge infrastructure. This can lead to improved vehicular safety, better traffic
management, and more efficient routing. Additionally, LEO satellites can ensure
wide and consistent network coverage, including remote or underserved areas, in-
creasing the reach and effectiveness of VEC applications. They can also assist in
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load balancing during peak data traffic periods and provide reliable backup commu-
nication channels in the event of ground network failures, ensuring consistent VEC
performance [51, 52].

7.3 Scientific Production

In the following sections, we present a list of publications produced at the moment of
this thesis writing. The list is divided into journals and conference papers (Sections 7.3.1
and 7.3.2). Also, we list the work developed in collaboration (Section 7.3.3) during the
doctoral period, with topics that relate directly to those discussed in this thesis.

7.3.1 Work Published in Journals

1. [35] Joahannes BD da Costa, Allan M de Souza, Eduardo Cerqueira, Denis
Rosário, Christoph Sommer, Leandro Villas. Mobility and Deadline-aware Task
Scheduling Mechanism for Vehicular Edge Computing. IEEE Transactions on In-
telligent Transportation Systems (T-ITS). 2023. DOI: 10.1109/TITS.2023.3276823.

2. [38] Joahannes BD da Costa, Wellington Lobato, Allan M de Souza, Eduardo
Cerqueira, Denis Rosário, Christoph Sommer, Leandro Villas. Mobility-aware Ve-
hicular Cloud Formation Mechanism for Vehicular Edge Computing Environments.
Elsevier Ad Hoc Networks. 2023. DOI: 10.1016/j.adhoc.2023.103300.

3. (Under Review) Joahannes BD da Costa, Allan M de Souza, Denis Rosário,
Christoph Sommer, Leandro Villas. Fair Process, Fair Outcome: Enhancing Fair-
ness and Load Balancing in Vehicular Edge Computing. Elsevier Vehicular Com-
munications. 2023.

7.3.2 Work Published in Conferences

1. [34] Joahannes BD da Costa, Allan M de Souza, Wellington Lobato, Denis
Rosário, Christoph Sommer, Leandro A Villas. Improving Fairness and Perfor-
mance in Resource Usage for Vehicular Edge Computing. IEEE 98th Vehicular
Technology Conference (VTC-Fall). 2023. To appear.

2. [37] Joahannes BD da Costa, Allan M de Souza, Denis Rosário, Christoph Som-
mer, Leandro A Villas. Efficient pareto optimality-based task scheduling for ve-
hicular edge computing. IEEE 96th Vehicular Technology Conference (VTC-Fall).
2022. DOI: 10.1109/VTC2022-Fall57202.2022.10013029.

3. [32] Joahannes BD da Costa, Wellington Lobato, Allan M de Souza, Eduardo
Cerqueira, Denis Rosário, Leandro A Villas. NEMESIS: Mecanismo para for-
mação de nuvens veiculares baseado em previsão de mobilidade. XL Simpósio
Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC). 2022. DOI:
10.5753/sbrc.2022.222309.

http://doi.org/10.1109/TITS.2023.3276823
http://doi.org/10.1016/j.adhoc.2023.103300
http://doi.org/10.1109/VTC2022-Fall57202.2022.10013029
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4. [36] Joahannes BD da Costa, Allan M de Souza, Rodolfo I Meneguette, Eduardo
Cerqueira, Denis Rosário, Leandro A Villas. Escalonamento de tarefas ciente de con-
texto para computação de borda veicular. XL Simpósio Brasileiro de Redes de Com-
putadores e Sistemas Distribuídos (SBRC). 2022. DOI: 10.5753/sbrc.2022.221910.

5. [39] Joahannes BD da Costa, Rodolfo I Meneguette, Denis Rosário, Leandro A
Villas. Combinatorial optimization-based task allocation mechanism for vehicular
clouds. IEEE 91st Vehicular Technology Conference (VTC-Spring). 2020. DOI:
10.1109/VTC2020-Spring48590.2020.9128834.

6. [40] Joahannes BD da Costa, Maycon LM Peixoto, Rodolfo I Meneguette, De-
nis Rosário, Leandro A Villas. MORFEU: Mecanismo Baseado em Otimização
Combinatória para Alocação de Tarefas em Nuvens Veiculares. XXXVIII Simpósio
Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC). 2020. DOI:
10.5753/sbrc.2020.12305.

7.3.3 Research Collaborations

The following articles were published during the PhD and, although they did not directly
integrate into the Thesis, they indirectly were part of the research trajectory.

1. [31] Joahannes BD da Costa, Allan M de Souza, Denis Rosário, Eduardo Cerqueira,
and Leandro A Villas. Efficient Data Dissemination Protocol based on Complex Net-
works’ Metrics for Urban Vehicular Networks. Springer Journal of Internet Services
and Applications (JISA). 2019. DOI: 10.1186/s13174-019-0114-y.

2. (Submitted) Wellington Lobato, Joahannes BD da Costa, Allan M de Souza, De-
nis Rosário, Christoph Sommer, and Leandro A Villas. Dynamic Semi-Synchronous
Federated Learning for Connected Autonomous Vehicles. 16th IEEE/ACM Inter-
national Conference on Utility and Cloud Computing (UCC). 2023.

3. [127] Aguimar R Júnior, Joahannes BD da Costa, Geraldo P Rocha Filho, Le-
andro A Villas, Daniel L Guidoni, Sandra Sampaio and Rodolfo I Meneguette.
HARMONIC: Shapley Values in Market Games for Resource Allocation in Vehicu-
lar Clouds. Elsevier Ad Hoc Networks. 2023. DOI: 10.1016/j.adhoc.2023.103224.

4. [92] Wellington Lobato, Joahannes BD da Costa, Allan M de Souza, Denis
Rosário, Christoph Sommer, and Leandro A Villas. FLEXE: Investigating Feder-
ated Learning in Connected Autonomous Vehicle Simulations. IEEE 96th Vehicular
Technology Conference (VTC-Fall). 2022. DOI: 10.1109/VTC2022-Fall57202.2022.
10012905.

5. [70] Aguimar R Júnior, Joahannes BD da Costa, Geraldo P Rocha Filho, Lean-
dro A Villas, Daniel L Guidoni, and Rodolfo I Meneguette. Alocação de Tarefas em
Nuvens Veiculares Utilizando Jogos de Mercado. XL Simpósio Brasileiro de Redes de
Computadores e Sistemas Distribuídos (SBRC). 2022. DOI: 10.5753/sbrc.2022.222247.
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6. [121] Matheus S Quessada, Douglas D Lieira, Joahannes BD da Costa, Ger-
aldo P Rocha Filho, E Robson, and Rodolfo I Meneguette. ARCANE: Algoritmo
Meta-heurístico para Alocação de Tarefas em Nuvens Veiculares. VI Workshop de
Computação Urbana (CoUrb). 2022. DOI: 10.5753/courb.2022.223498.

7. [87] Douglas D Lieira, Matheus S Quessada, Joahannes BD da Costa, Eduardo
Cerqueira, Denis Rosário, and Rodolfo I Meneguette. TOVEC: Task Optimiza-
tion Mechanism for Vehicular Clouds using Meta-heuristic Technique. Interna-
tional Wireless Communications and Mobile Computing (IWCMC). 2021. DOI:
10.1109/IWCMC51323.2021.9498784.

8. [118] Rickson S Pereira, Douglas D Lieira, Marco AC da Silva, Adinovam HM Pi-
menta, Joahannes BD da Costa, Denis Rosário, Leandro Villas, and Rodolfo I
Meneguette. RELIABLE: Resource Allocation Mechanism for 5g Network Using
Mobile Edge Computing. MDPI Sensors. 2020. DOI: 10.3390/s20195449.

9. [129] Lucas B Rondon, Joahannes BD da Costa, Geraldo P Rocha Filho, Denis
Rosário, and Leandro A Villas. Degree Centrality-based Caching Discovery Protocol
for Vehicular Named-data Networks. IEEE 91st Vehicular Technology Conference
(VTC-Spring). 2020. DOI: 10.1109/VTC2020-Spring48590.2020.9128557.

10. [116] Rickson S Pereira, Douglas D Lieira, Marco AC da Silva, Adonivam Pimenta,
Joahannes BD da Costa, Denis Rosario, Rodolfo I Meneguette, and Leandro A
Villas. A Novel Fog-based Resource Allocation Policy for Vehicular Clouds in the
Highway Environment. IEEE 11th Latin-American Conference on Communications
(LATINCOM). 2019. DOI: 10.1109/LATINCOM48065.2019.8937912.

11. [128] Lucas B Rondon, Joahannes BD da Costa, Geraldo Pereira, and Leandro
A Villas. A Distance and Position-based Caching Discovery Protocol for Vehicular
Named-data Networks. IEEE 11th Latin-American Conference on Communications
(LATINCOM). 2019. DOI: 10.1109/LATINCOM48065.2019.8938022.

12. [104] Rodolfo I Meneguette, Diego O Rodrigues, Joahannes BD da Costa, Denis
Rosario, and Leandro A Villas. A Virtual Machine Migration Policy based on Multi-
ple Attribute Decision in Vehicular Cloud Scenario. IEEE International Conference
on Communications (ICC). 2019. DOI: 10.1109/ICC.2019.8761248.

13. [72] Wellington Lobato, Joahannes BD da Costa, Denis Rosário, Eduardo Cerqueira,
and Leandro A Villas. A Comparative Analysis of DSRC and VLC for Video Dis-
semination in Platoon of Vehicles. IEEE 10th Latin-American Conference on Com-
munications (LATINCOM). 2018. DOI: 10.1109/LATINCOM.2018.8613247.
Best Paper Award.

14. [71] Wellington Lobato, Joahannes BD da Costa, Eduardo Cerqueira. Avaliação
Exploratória da Disseminação de Vídeos para Aplicações See-through em Redes
Veiculares. XXIII Workshop de Gerência e Operação de Redes e Serviços (WGRS).
2018.
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